scholarly journals Investigation of Mutant Ryanodine Receptor Channel Activity using Functional Analysis and Molecular Dynamics

2019 ◽  
Vol 116 (3) ◽  
pp. 521a-522a
Author(s):  
Toshiko Yamazawa ◽  
Haruo Ogawa ◽  
Maki Yamaguchi ◽  
Takashi Murayama ◽  
Hideto Oyamada ◽  
...  
2012 ◽  
Vol 21 (20) ◽  
pp. 4497-4507 ◽  
Author(s):  
Kyoko Takano ◽  
Dan Liu ◽  
Patrick Tarpey ◽  
Esther Gallant ◽  
Alex Lam ◽  
...  

2004 ◽  
Vol 379 (1) ◽  
pp. 161-172 ◽  
Author(s):  
Angela F. DULHUNTY ◽  
Suzanne M. CURTIS ◽  
Louise CENGIA ◽  
Magdalena SAKOWSKA ◽  
Marco G. CASAROTTO

We show that peptide fragments of the dihydropyridine receptor II–III loop alter cardiac RyR (ryanodine receptor) channel activity in a cytoplasmic Ca2+-dependent manner. The peptides were AC (Thr-793–Ala-812 of the cardiac dihydropyridine receptor), AS (Thr-671–Leu-690 of the skeletal dihydropyridine receptor), and a modified AS peptide [AS(D-R18)], with an extended helical structure. The peptides added to the cytoplasmic side of channels in lipid bilayers at ≥10 nM activated channels when the cytoplasmic [Ca2+] was 100 nM, but either inhibited or did not affect channel activity when the cytoplasmic [Ca2+] was 10 or 100 µM. Both activation and inhibition were independent of bilayer potential. Activation by AS, but not by AC or AS(D-R18), was reduced at peptide concentrations >1 µM in a voltage-dependent manner (at +40 mV). In control experiments, channels were not activated by the scrambled AS sequence (ASS) or skeletal II–III loop peptide (NB). Resting Ca2+ release from cardiac sarcoplasmic reticulum was not altered by peptide AC, but Ca2+-induced Ca2+ release was depressed. Resting and Ca2+-induced Ca2+ release were enhanced by both the native and modified AS peptides. NMR revealed (i) that the structure of peptide AS(D-R18) is not influenced by [Ca2+] and (ii) that peptide AC adopts a helical structure, particularly in the region containing positively charged residues. This is the first report of specific functional interactions between dihydropyridine receptor A region peptides and cardiac RyR ion channels in lipid bilayers.


Nature ◽  
1996 ◽  
Vol 380 (6569) ◽  
pp. 72-75 ◽  
Author(s):  
Junichi Nakai ◽  
Robert T. Dirksen ◽  
Hanh T. Nguyen ◽  
Isaac N. Pessah ◽  
Kurt G. Beam ◽  
...  

2000 ◽  
Vol 2 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Angela Dulhunty ◽  
Claudia Haarmann ◽  
Daniel Green ◽  
James Hart

1990 ◽  
Vol 58 (2) ◽  
pp. 471-481 ◽  
Author(s):  
H.H. Valdivia ◽  
C. Valdivia ◽  
J. Ma ◽  
R. Coronado

2003 ◽  
Vol 376 (3) ◽  
pp. 807-812 ◽  
Author(s):  
Gábor BÁNHEGYI ◽  
Miklós CSALA ◽  
Gábor NAGY ◽  
Vincenzo SORRENTINO ◽  
Rosella FULCERI ◽  
...  

In the present study, we have investigated the role of RyR1 (ryanodine receptor calcium channel type 1) in glutathione (GSH) transport through the sarcoplasmic reticulum (SR) membrane of skeletal muscles. Lanthanum chloride, a prototypic blocker of cation channels, inhibited the influx and efflux of GSH in SR vesicles. Using a rapid-filtration-based assay and lanthanum chloride as a transport blocker, an uptake of radiolabelled GSH into SR vesicles was observed. Pretreatment of SR vesicles with the RyR1 antagonists Ruthenium Red and ryanodine as well as with lanthanum chloride blocked the GSH uptake. An SR-like GSH uptake appeared in microsomes obtained from an HEK-293 (human embryonic kidney 293) cell line after transfection of RyR1. These observations strongly suggest that RyR1 mediates GSH transport through the SR membranes of skeletal muscles.


Sign in / Sign up

Export Citation Format

Share Document