scholarly journals Quantitative Examination of Changes in Fluidity and Cholesterol Content in Bovine Aortic Endothelial Cells using Phasor Analysis of Laurdan Fluorescence Lifetime

2021 ◽  
Vol 120 (3) ◽  
pp. 324a
Author(s):  
Kelly A. Zaccheo ◽  
Balam Benítez-Mata ◽  
Michelle A. Digman ◽  
Donald G. Buerk ◽  
Dov Jaron ◽  
...  
2000 ◽  
Vol 115 (4) ◽  
pp. 405-416 ◽  
Author(s):  
Irena Levitan ◽  
Aimee E. Christian ◽  
Thomas N. Tulenko ◽  
George H. Rothblat

Activation of volume-regulated anion current (VRAC) plays a key role in the maintenance of cellular volume homeostasis. The mechanisms, however, that regulate VRAC activity are not fully understood. We have examined whether VRAC activation is modulated by the cholesterol content of the membrane bilayer. The cholesterol content of bovine aortic endothelial cells was increased by two independent methods: (a) exposure to a methyl-β-cyclodextrin saturated with cholesterol, or (b) exposure to cholesterol-enriched lipid dispersions. Enrichment of bovine aortic endothelial cells with cholesterol resulted in a suppression of VRAC activation in response to a mild osmotic gradient, but not to a strong osmotic gradient. Depletion of membrane cholesterol by exposing the cells to methyl-β-cyclodextrin not complexed with cholesterol resulted in an enhancement of VRAC activation when the cells were challenged with a mild osmotic gradient. VRAC activity in cells challenged with a strong osmotic gradient were unaffected by depletion of membrane cholesterol. These observations show that changes in membrane cholesterol content shift VRAC sensitivity to osmotic gradients. Changes in VRAC activation were not accompanied by changes in anion permeability ratios, indicating that channel selectivity was not affected by the changes in membrane cholesterol. This suggests that membrane cholesterol content affects the equilibrium between the closed and open states of VRAC channel rather than the basic pore properties of the channel. We hypothesize that changes in membrane cholesterol modulate VRAC activity by affecting the membrane deformation energy associated with channel opening.


1983 ◽  
Vol 49 (02) ◽  
pp. 132-137 ◽  
Author(s):  
A Eldor ◽  
G Polliack ◽  
I Vlodavsky ◽  
M Levy

SummaryDipyrone and its metabolites 4-methylaminoantipyrine, 4-aminoantipyrine, 4-acetylaminoantipyrine and 4-formylaminoan- tipyrine inhibited the formation of thromboxane A2 (TXA2) during in vitro platelet aggregation induced by ADP, epinephrine, collagen, ionophore A23187 and arachidonic acid. Inhibition occurred after a short incubation (30–40 sec) and depended on the concentration of the drug or its metabolites and the aggregating agents. The minimal inhibitory concentration of dipyrone needed to completely block aggregation varied between individual donors, and related directly to the inherent capacity of their platelets to synthesize TXA2.Incubation of dipyrone with cultured bovine aortic endothelial cells resulted in a time and dose dependent inhibition of the release of prostacyclin (PGI2) into the culture medium. However, inhibition was abolished when the drug was removed from the culture, or when the cells were stimulated to produce PGI2 with either arachidonic acid or ionophore A23187.These results indicate that dipyrone exerts its inhibitory effect on prostaglandins synthesis by platelets or endothelial cells through a competitive inhibition of the cyclooxygenase system.


1990 ◽  
Vol 265 (13) ◽  
pp. 7195-7201
Author(s):  
B A Lipton ◽  
E P Davidson ◽  
B H Ginsberg ◽  
M A Yorek

1996 ◽  
Vol 18 (3) ◽  
pp. 193-206 ◽  
Author(s):  
Johannes M�thing ◽  
Sevim Duvar ◽  
Susann Nerger ◽  
Heino B�ntemeyer ◽  
J�rgen Lehmann

Sign in / Sign up

Export Citation Format

Share Document