Organization of anterior cingulate and frontal cortical projections to the anterior and laterodorsal thalamic nuclei in the rat

2005 ◽  
Vol 1059 (1) ◽  
pp. 93-103 ◽  
Author(s):  
Hideshi Shibata ◽  
Jumpei Naito
1992 ◽  
Vol 13 (2) ◽  
pp. 119-137 ◽  
Author(s):  
Katsuma Nakano ◽  
Akinori Tokushige ◽  
Masako Kohno ◽  
Yasuo Hasegawa ◽  
Tetsuro Kayahara ◽  
...  

2020 ◽  
Vol 4 ◽  
pp. 239821282095716
Author(s):  
Emma J. Bubb ◽  
Andrew J. D. Nelson ◽  
Thomas C. Cozens ◽  
John P. Aggleton

Despite considerable interest in the properties of the cingulum bundle, descriptions of the composition of this major pathway in the rodent brain have not kept pace with advances in tract tracing. Using complementary approaches in rats and mice, this study examined the dense, reciprocal connections the anterior thalamic nuclei have with the cingulate and retrosplenial cortices, connections thought to be major contributors to the rodent cingulum bundle. The rat data came from a mixture of fluorescent and viral tracers, some injected directly into the bundle. The mouse data were collated from the Allen Mouse Brain Atlas. The projections from the three major anterior thalamic nuclei occupied much of the external medullary stratum of the cingulum bundle, where they were concentrated in its more medial portions. These anterior thalamic projections formed a rostral-reaching basket of efferents prior to joining the cingulum bundle, with anteromedial efferents taking the most rostral routes, often reaching the genu of the corpus callosum, while anterodorsal efferents took the least rostral route. In contrast, the return cortico-anterior thalamic projections frequently crossed directly through the bundle or briefly joined the internal stratum of the cingulum bundle, often entering the internal capsule before reaching the anterior thalamus. These analyses confirm that anterior thalamic connections comprise an important component of the rodent cingulum bundle, while also demonstrating the very different routes used by thalamo-cortical and cortico-thalamic projections. This information reveals how the composition of the cingulum bundle alters along its length.


2021 ◽  
Author(s):  
Ko-Ting Chen ◽  
Sheng-Yao Huang ◽  
Yi-Jye Chen

Abstract Purpose of ReviewAstasia refers to the inability to maintain upright posture during standing, despite having full motor strength. However, the pathophysiology and neural pathways of astasia remains unclear.Recent FindingsWe analyzed 26, including ours, non-psychogenic astasia patients in English literature. Seventy-three percent of them were man, 73% were associated with other neurologic symptoms and 62% of reported lesions were at right side. Contralateral lateropulsion was very common followed by retropulsion while describing astasia. Infarction (54%) was the most commonly reported cause. Thalamus (65%) was the most commonly reported location. Infarction being the mostly likely to recover (mean:10.6 days), while lesions at brainstem had longer time to recover (mean: 61.6 days).SummaryThe underlying interrupted pathway may be the primary graviceptive system, which composed of at least five unilateral and contralateral projection fibers from vestibular nuclei to thalamic nuclei, and thalamo-cortical projections including subcortical white matter tracts and cortical areas.


2019 ◽  
Vol 214 (5) ◽  
pp. 288-296 ◽  
Author(s):  
Jinnan Gong ◽  
Cheng Luo ◽  
Xiangkui Li ◽  
Sisi Jiang ◽  
Budhachandra S. Khundrakpam ◽  
...  

BackgroundPrevious studies in schizophrenia revealed abnormalities in the cortico-cerebellar-thalamo-cortical circuit (CCTCC) pathway, suggesting the necessity for defining thalamic subdivisions in understanding alterations of brain connectivity.AimsTo parcellate the thalamus into several subdivisions using a data-driven method, and to evaluate the role of each subdivision in the alterations of CCTCC functional connectivity in patients with schizophrenia.MethodThere were 54 patients with schizophrenia and 42 healthy controls included in this study. First, the thalamic structural and functional connections computed, based on diffusion magnetic resonance imaging (MRI, white matter tractography) and resting-state functional MRI, were clustered to parcellate thalamus. Next, functional connectivity of each thalamus subdivision was investigated, and the alterations in thalamic functional connectivity for patients with schizophrenia were inspected.ResultsBased on the data-driven parcellation method, six thalamic subdivisions were defined. Loss of connectivity was observed between several thalamic subdivisions (superior-anterior, ventromedial and dorsolateral part of the thalamus) and the sensorimotor system, anterior cingulate cortex and cerebellum in patients with schizophrenia. A gradual pattern of dysconnectivity was observed across the thalamic subdivisions. Additionally, the altered connectivity negatively correlated with symptom scores and duration of illness in individuals with schizophrenia.ConclusionsThe findings of the study revealed a wide range of thalamic functional dysconnectivity in the CCTCC pathway, increasing our understanding of the relationship between the CCTCC pathway and symptoms associated with schizophrenia, and further indicating a potential alteration pattern in the thalamic nuclei in people with schizophrenia.Declaration of interestNone.


2020 ◽  
Author(s):  
Emma J Bubb ◽  
John P Aggleton ◽  
Shane M O’Mara ◽  
Andrew J D Nelson

Abstract In a changing environment, organisms need to decide when to select items that resemble previously rewarded stimuli and when it is best to switch to other stimulus types. Here, we used chemogenetic techniques to provide causal evidence that activity in the rodent anterior cingulate cortex and its efferents to the anterior thalamic nuclei modulate the ability to attend to reliable predictors of important outcomes. Rats completed an attentional set-shifting paradigm that first measures the ability to master serial discriminations involving a constant stimulus dimension that reliably predicts reinforcement (intradimensional-shift), followed by the ability to shift attention to a previously irrelevant class of stimuli when reinforcement contingencies change (extradimensional-shift). Chemogenetic disruption of the anterior cingulate cortex (Experiment 1) as well as selective disruption of anterior cingulate efferents to the anterior thalamic nuclei (Experiment 2) impaired intradimensional learning but facilitated 2 sets of extradimensional-shifts. This pattern of results signals the loss of a corticothalamic system for cognitive control that preferentially processes stimuli resembling those previously associated with reward. Previous studies highlight a separate medial prefrontal system that promotes the converse pattern, that is, switching to hitherto inconsistent predictors of reward when contingencies change. Competition between these 2 systems regulates cognitive flexibility and choice.


2012 ◽  
Vol 109 (38) ◽  
pp. 15497-15501 ◽  
Author(s):  
Sangwoo Kim ◽  
Ferenc Mátyás ◽  
Sukchan Lee ◽  
László Acsády ◽  
Hee-Sup Shin

Major cognitive and emotional faculties are dominantly lateralized in the human cerebral cortex. The mechanism of this lateralization has remained elusive owing to the inaccessibility of human brains to many experimental manipulations. In this study we demonstrate the hemispheric lateralization of observational fear learning in mice. Using unilateral inactivation as well as electrical stimulation of the anterior cingulate cortex (ACC), we show that observational fear learning is controlled by the right but not the left ACC. In contrast to the cortex, inactivation of either left or right thalamic nuclei, both of which are in reciprocal connection to ACC, induced similar impairment of this behavior. The data suggest that lateralization of negative emotions is an evolutionarily conserved trait and mainly involves cortical operations. Lateralization of the observational fear learning behavior in a rodent model will allow detailed analysis of cortical asymmetry in cognitive functions.


Sign in / Sign up

Export Citation Format

Share Document