Na+/Ca2+ exchanger 1 alters in pyramidal cells and expresses in astrocytes of the gerbil hippocampal CA1 region after ischemia

2006 ◽  
Vol 1086 (1) ◽  
pp. 181-190 ◽  
Author(s):  
In Koo Hwang ◽  
Ki-Yeon Yoo ◽  
Dae Won Kim ◽  
Tae-Cheon Kang ◽  
Soo Young Choi ◽  
...  
2021 ◽  
Author(s):  
Jun Guo ◽  
Heankel Cantu Oliveros ◽  
So Jung Oh ◽  
Bo Liang ◽  
Ying Li ◽  
...  

Encoding and retrieval of memory are two processes serving distinct biological purposes but operating in highly overlapping brain circuits. It is unclear how the two processes are coordinated in the same brain regions, especially in the hippocampal CA1 region where the two processes converge at the cellular level. Here we find that the neuron-derived neurotrophic factor (NDNF)-positive interneurons at stratum lacunosum-moleculare (SLM) in CA1 play opposite roles in memory encoding and retrieval. These interneurons show high activities in learning and low activities in recall. Increasing their activity facilitates learning but impairs recall. They inhibit the entorhinal- but dis-inhibit the CA3- inputs to CA1 pyramidal cells and thereby either suppress or elevate CA1 pyramidal cells′ activity depending on animal′s behavioral states. Thus, by coordinating entorhinal- and CA3- dual inputs to CA1, these SLM interneurons are key to switching the hippocampus between encoding and retrieval modes.


2015 ◽  
Vol 35 (4) ◽  
pp. 565-575 ◽  
Author(s):  
Thomas Scherf ◽  
Frank Angenstein

The specific role of postsynaptic activity for the generation of a functional magnetic resonance imaging (fMRI) response was determined by a simultaneous measurement of generated field excitatory postsynaptic potentials (fEPSPs) and blood oxygen level-dependent (BOLD) response in the rat hippocampal CA1 region during electrical stimulation of the contralateral CA3 region. The stimulation electrode was placed either in the left CA3a/b or CA3c, causing the preferentially basal or apical dendrites of the pyramidal cells in the right CA1 to be activated. Consecutive stimulations with low-intensity stimulation trains (i.e., 16 pulses for 8 seconds) resulted in clear postsynaptic responses of CA1 pyramidal cells, but in no significant BOLD responses. In contrast, consecutive high-intensity stimulation trains resulted in stronger postsynaptic responses that came along with minor (during stimulation of the left CA3a/b) or substantial (during stimulation of the left CA3c) spiking activity of the CA1 pyramidal cells, and resulted in the generation of significant BOLD responses in the left and right hippocampus. Correlating the electrophysiologic parameters of CA1 pyramidal cell activity (fEPSP and spiking activity) with the resultant BOLD response revealed no positive correlation. Consequently, postsynaptic activity of pyramidal cells, the most abundant neurons in the CA1, is not directly linked to the measured BOLD response.


2021 ◽  
Author(s):  
Jun Guo ◽  
Heankel Oliveros ◽  
So Jung Oh ◽  
Bo Liang ◽  
Ying Li ◽  
...  

Abstract Encoding and retrieval of memory are two processes serving distinct biological purposes but operating in highly overlapping brain circuits. It is unclear how the two processes are coordinated in the same brain regions, especially in the hippocampal CA1 region where the two processes converge at the cellular level. Here we find that the neuron-derived neurotrophic factor (NDNF)-positive interneurons at stratum lacunosum-moleculare (SLM) in CA1 play opposite roles in memory encoding and retrieval. These interneurons show high activities in learning and low activities in recall. Increasing their activity facilitates learning but impairs recall. They inhibit the entorhinal- but dis-inhibit the CA3- inputs to CA1 pyramidal cells and thereby either suppress or elevate CA1 pyramidal cells’ activity depending on animal’s behavioral states. Thus, by coordinating entorhinal- and CA3- dual inputs to CA1, these SLM interneurons are key to switching the hippocampus between encoding and retrieval modes.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261644
Author(s):  
Amit Benbenishty ◽  
Jacob Schneiderman

Background Brain reperfusion following an ischemic event is essential for tissue viability, however, it also involves processes that promote neuronal cell death. We have recently shown that local expression of the hormone leptin in cardiovascular organs drives deleterious remodeling. As cerebral ischemia-reperfusion (IR) lesions derive expression of both the leptin hormone and its receptor, we hypothesized that blocking leptin activity in the injured brain area will reduce the deleterious effects of IR injury. Methods C57BL6 male mice underwent bilateral common carotid artery and external carotid artery ligation. The right hemisphere was reperfused after 12 minutes, followed by intraarterial injection of either a low-dose leptin antagonist or saline solution via the ipsilateral ICA. The left common carotid artery remained ligated. Fifteen IR/leptin antagonist-injected and fourteen IR/saline-injected mice completed the experiment. Five days after surgery brains were collected and samples of the hippocampal CA1 region were analyzed for cell viability (H&E) and apoptosis (TUNEL and caspase3), for neuroinflammation (Iba1), and for signaling pathways of pSTAT3 and pSmad2. Results The right hemisphere hippocampal CA1 region subjected to IR and saline injection exhibited increased apoptosis and necrosis of pyramidal cells. Also, increased density of activated microglia/macrophages was evident around the CA1 region. Comparatively, leptin antagonist treatment at reperfusion reduced apoptosis and necrosis of pyramidal cells, as indicated by increased number of viable cells (p < 0.01), and reduced TUNEL (p < 0.001) and caspase3-positive cells (p<0.05). Furthermore, this treatment reduced the density of activated microglia/macrophages (p < 0.001) in the CA1 region. Signaling pathway analysis revealed that while pSTAT3 and pSmad2-positive cells were found surrounding the stratum pyramidal in saline-treated animals, pSTAT3 signal was undetected and pSmad2 was greatly reduced in this territory following leptin antagonist treatment (p < 0.01). Conclusions Inhibition of leptin activity in hemispheric IR injury preserved the viability of ipsilateral hippocampal CA1 neurons, likely by preventing apoptosis and local inflammation. These results indicate that intraarterial anti-leptin therapy may have clinical potential in reducing hemispheric brain IR injury.


Sign in / Sign up

Export Citation Format

Share Document