scholarly journals Effect of metabolic inhibition on K+ channels in pyramidal cells of the hippocampal CA1 region in rat brain slices.

1996 ◽  
Vol 496 (1) ◽  
pp. 155-164 ◽  
Author(s):  
L Hyllienmark ◽  
T Brismar
2021 ◽  
Author(s):  
Jun Guo ◽  
Heankel Cantu Oliveros ◽  
So Jung Oh ◽  
Bo Liang ◽  
Ying Li ◽  
...  

Encoding and retrieval of memory are two processes serving distinct biological purposes but operating in highly overlapping brain circuits. It is unclear how the two processes are coordinated in the same brain regions, especially in the hippocampal CA1 region where the two processes converge at the cellular level. Here we find that the neuron-derived neurotrophic factor (NDNF)-positive interneurons at stratum lacunosum-moleculare (SLM) in CA1 play opposite roles in memory encoding and retrieval. These interneurons show high activities in learning and low activities in recall. Increasing their activity facilitates learning but impairs recall. They inhibit the entorhinal- but dis-inhibit the CA3- inputs to CA1 pyramidal cells and thereby either suppress or elevate CA1 pyramidal cells′ activity depending on animal′s behavioral states. Thus, by coordinating entorhinal- and CA3- dual inputs to CA1, these SLM interneurons are key to switching the hippocampus between encoding and retrieval modes.


2006 ◽  
Vol 1086 (1) ◽  
pp. 181-190 ◽  
Author(s):  
In Koo Hwang ◽  
Ki-Yeon Yoo ◽  
Dae Won Kim ◽  
Tae-Cheon Kang ◽  
Soo Young Choi ◽  
...  

1999 ◽  
Vol 82 (3) ◽  
pp. 1147-1155 ◽  
Author(s):  
A. Ouanonou ◽  
Y. Zhang ◽  
L. Zhang

Using the model of hypoxia-hypoglycemia (HH) in rat brain slices, we asked whether glutamate transmission is altered following a brief HH episode. The HH challenge was conducted by exposing slices to a glucose-free medium aerated with 95% N2-5% CO2, for ∼4 min, and glutamate transmission in the hippocampal CA1 region was monitored at different post HH times. In slices examined ≤8 h post HH, CA1 synaptic field potentials are comparable in amplitude to controls, but are less sensitive to experimental manipulations designed to attenuate intracellular Ca2+ signals, as compared with controls. Reducing calcium influx, by applying a nonspecific calcium channel blocker Co2+ or lowering external Ca2+, attenuated CA1 synaptic potentials much less in challenged slices than in controls. Buffering intracellular Ca2+ by bis-( o-aminophenoxy)- N,N,N′,N′-tetraacetic acid-AM (BAPTA-AM) attenuated CA1 synaptic potentials in control but not in slices post HH. Furthermore, minimally evoked excitatory postsynaptic currents displayed a lower failure rate in post-hypoxic CA1 neurons compared with controls. Based on these convergent observations, we suggest that evoked CA1 glutamate transmission is altered in the first several hours after brief hypoxia, likely resulting from alterations in intracellular Ca2+homeostasis and/or Ca2+-dependent processes governing transmitter release.


Sign in / Sign up

Export Citation Format

Share Document