Pivotal role of the ventral tegmental area in spontaneous motor activity and concomitant cardiovascular responses in decerebrate rats

2020 ◽  
Vol 1729 ◽  
pp. 146616
Author(s):  
Kei Ishii ◽  
Ryota Asahara ◽  
Hidehiko Komine ◽  
Nan Liang ◽  
Kanji Matsukawa
1986 ◽  
Vol 251 (2) ◽  
pp. R243-R249 ◽  
Author(s):  
P. W. Kalivas ◽  
R. Richardson-Carlson

Many lines of evidence support the possibility that the opioid pentapeptides Met- and Leu-enkephalin can modulate dopamine neurons in the ventral tegmental area (VTA). Thus microinjection of enkephalin analogues into the VTA of rats produces a dopamine-dependent increase in spontaneous motor activity and an increase in dopamine metabolism in certain mesolimbic dopamine terminal fields, such as the nucleus accumbens. To determine if these effects can be produced by endogenous enkephalins, an enkephalinase A inhibitor, thiorphan, was microinjected into the VTA to inhibit enkephalin metabolism. Thiorphan produced a dose-dependent (0.3-3.33 micrograms) increase in spontaneous motor activity that was blocked by pretreatment with the opioid antagonist naloxone (2.0 mg/kg ip) or the dopamine antagonist haloperidol (0.1 mg/kg ip). Thiorphan injection into the VTA increased dopamine metabolism in the nucleus accumbens, prefrontal cortex, and septum but not in the striatum. In all brain regions the increase in dopamine metabolism was blocked by pretreatment with naloxone. These data demonstrate that endogenous enkephalin in the VTA can increase the activity of A10 dopamine neurons, supporting a physiological role for enkephalin in mesolimbic and mesocortical dopamine-mediated behaviors.


2021 ◽  
Author(s):  
Kobra Askari ◽  
Shahrbanoo Oryan ◽  
Akram Eidi ◽  
Jalal Zaringhalam ◽  
Abbas Haghparast

Author(s):  
Hongsheng Wang ◽  
Wanpeng Cui ◽  
Wenbing Chen ◽  
Fang Liu ◽  
Zhaoqi Dong ◽  
...  

AbstractDopamine (DA) neurons in the ventral tegmental area (VTA) are critical to coping with stress. However, molecular mechanisms regulating their activity and stress-induced depression were not well understood. We found that the receptor tyrosine kinase ErbB4 in VTA was activated in stress-susceptible mice. Deleting ErbB4 in VTA or in DA neurons, or chemical genetic inhibition of ErbB4 kinase activity in VTA suppressed the development of chronic social defeat stress (CSDS)-induced depression-like behaviors. ErbB4 activation required the expression of NRG1 in the laterodorsal tegmentum (LDTg); LDTg-specific deletion of NRG1 inhibited depression-like behaviors. NRG1 and ErbB4 suppressed potassium currents of VTA DA neurons and increased their firing activity. Finally, we showed that acute inhibition of ErbB4 after stress attenuated DA neuron hyperactivity and expression of depression-like behaviors. Together, these observations demonstrate a critical role of NRG1-ErbB4 signaling in regulating depression-like behaviors and identify an unexpected mechanism by which the LDTg-VTA circuit regulates the activity of DA neurons.


2015 ◽  
Vol 35 (35) ◽  
pp. 12217-12231 ◽  
Author(s):  
L. Hipolito ◽  
A. Wilson-Poe ◽  
Y. Campos-Jurado ◽  
E. Zhong ◽  
J. Gonzalez-Romero ◽  
...  

1997 ◽  
Vol 273 (6) ◽  
pp. H2549-H2557 ◽  
Author(s):  
Gilbert J. Kirouac ◽  
John Ciriello

Experiments were done in α-chloralose-anesthetized, paralyzed, and artificially ventilated rats to investigate the effect ofl-glutamate (Glu) stimulation of the substantia nigra (SN) and ventral tegmental area (VTA) on arterial pressure (AP) and heart rate (HR). Glu stimulation of the SN pars compacta (SNC) elicited decreases in both mean AP (MAP; −18.9 ± 1.3 mmHg; n = 52) and HR (−26.1 ± 1.6 beats/min; n = 46) at 81% of the sites stimulated. On the other hand, stimulation of the SN pars lateralis or pars reticulata did not elicit cardiovascular responses. Stimulation of the adjacent VTA region elicited similar decreases in MAP (−18.0 ± 2.6 mmHg; n = 20) and HR (−25.4 ± 3.8 beats/min; n = 17) at ∼74% of the sites stimulated. Intravenous administration of the dopamine D2-receptor antagonist raclopride significantly attenuated both the MAP (70%) and the HR (54%) responses elicited by stimulation of the transitional region where the SNC merges with the lateral VTA (SNC-VTA region). Intravenous administration of the muscarinic receptor blocker atropine methyl bromide had no effect on the magnitude of the MAP and HR responses to stimulation of the SNC-VTA region, whereas administration of the nicotinic receptor blocker hexamethonium bromide significantly attenuated both the depressor and the bradycardic responses. These data suggest that dopaminergic neurons in the SNC-VTA region activate a central pathway that exerts cardiovascular depressor effects that are mediated by the inhibition of sympathetic vasoconstrictor fibers to the vasculature and cardioacceleratory fibers to the heart.


Sign in / Sign up

Export Citation Format

Share Document