scholarly journals Calcium channels control tDCS-induced spontaneous vesicle release from axon terminals

2022 ◽  
Author(s):  
Sreerag Othayoth Vasu ◽  
Hanoch Kaphzan
2006 ◽  
Vol 34 (5) ◽  
pp. 939-941 ◽  
Author(s):  
R.J. Kittel ◽  
S. Hallermann ◽  
S. Thomsen ◽  
C. Wichmann ◽  
S.J. Sigrist ◽  
...  

Neurotransmitter release at chemical synapses occurs when synaptic vesicles fuse to the presynaptic membrane at a specialized site termed the active zone. The depolarization-induced fusion is highly dependent on calcium ions, and, correspondingly, the transmission characteristics of synapses are thought to be influenced by the spatial arrangement of voltage-gated calcium channels with respect to vesicle release sites. Here, we review the involvement of the Drosophila Bruchpilot (BRP) protein in active zone assembly, a process that is required for the clustering of presynaptic calcium channels to ensure efficient vesicle release.


2009 ◽  
Vol 101 (5) ◽  
pp. 2601-2619 ◽  
Author(s):  
Michael Coggins ◽  
David Zenisek

Ribbon-containing neurons represent a subset of neural cells that undergo graded membrane depolarizations rather than Na+-channel evoked action potentials. Bipolar cells of the retina are one type of ribbon-containing neuron and extensive research has demonstrated kinetically distinct pools of vesicles that are released and replenished in a calcium-dependent manner. In this study, we look at the properties of the fastest pool of releasable vesicles in these cells, often referred to as the immediately releasable pool (IRP), to investigate the relationships between vesicle release and calcium channels in these terminals. Using whole cell capacitance measurements, we monitored exocytosis in response to different magnitude and duration depolarizations, with emphasis on physiologically relevant step depolarizations. We find that release rate of the IRP increases superlinearly with membrane potential and that the IRP is sensitive to elevated EGTA concentrations in a membrane-potential–dependent manner across the physiological range of membrane potentials. Our results are best explained by a model in which multiple Ca2+ channels act in concert to drive exocytosis of a single synaptic vesicle. Pooling calcium entering through many calcium channels may be important for reducing stochastic noise in neurotransmitter release associated with the opening of individual calcium channels.


Author(s):  
K. Cullen-Dockstader ◽  
E. Fifkova

Normal aging results in a pronounced spatial memory deficit associated with a rapid decay of long-term potentiation at the synapses between the perforant path and spines in the medial and distal thirds of the dentate molecular layer (DML), suggesting the alteration of synaptic transmission in the dentate fascia. While the number of dentate granule cells remains unchanged, and there are no obvious pathological changes in these cells associated with increasing age, the density of their axospinous contacts has been shown to decrease. There are indications that the presynaptic element is affected by senescence before the postsynaptic element, yet little attention has been given to the fine structure of the remaining axon terminals. Therefore, we studied the axon terminals of the perforant path in the DML across three age groups.5 Male rats (Fischer 344) of each age group (3, 24 and 30 months), were perfused through the aorta.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
K Petit ◽  
F Grolleau ◽  
SM Todorovic ◽  
PM Joksovic ◽  
W Yong Lee ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document