Design of feedback-structured IIR notch filter with transient suppression using gain variation

2022 ◽  
Vol 71 ◽  
pp. 103075
Author(s):  
Sahar Amini ◽  
Behzad Mozaffari Tazehkand
Keyword(s):  
Author(s):  
Michael K. Kundmann ◽  
Ondrej L. Krivanek

Parallel detection has greatly improved the elemental detection sensitivities attainable with EELS. An important element of this advance has been the development of differencing techniques which circumvent limitations imposed by the channel-to-channel gain variation of parallel detectors. The gain variation problem is particularly severe for detection of the subtle post-threshold structure comprising the EXELFS signal. Although correction techniques such as gain averaging or normalization can yield useful EXELFS signals, these are not ideal solutions. The former is a partial throwback to serial detection and the latter can only achieve partial correction because of detector cell inhomogeneities. We consider here the feasibility of using the difference method to efficiently and accurately measure the EXELFS signal.An important distinction between the edge-detection and EXELFS cases lies in the energy-space periodicities which comprise the two signals. Edge detection involves the near-edge structure and its well-defined, shortperiod (5-10 eV) oscillations. On the other hand, EXELFS has continuously changing long-period oscillations (∼10-100 eV).


Author(s):  
Maoxu Qian ◽  
Mehmet Sarikaya ◽  
Edward A. Stern

It is difficult, in general, to perform quantitative EELS to determine, for example, relative or absolute compositions of elements with relatively high atomic numbers (using, e.g., K edge energies from 500 eV to 2000 eV), to study ELNES (energy loss near edge structure) signal using the white lines to determine oxidation states, and to analyze EXELFS (extended energy loss fine structure) to study short range ordering. In all these cases, it is essential to have high signal-to-noise (S/N) ratio (low systematical error) with high overall counts, and sufficient energy resolution (∽ 1 eV), requirements which are, in general, difficult to attain. The reason is mainly due to three important inherent limitations in spectrum acquisition with EELS in the TEM. These are (i) large intrinsic background in EELS spectra, (ii) channel-to-channel gain variation (CCGV) in the parallel detection system, and (iii) difficulties in obtaining statistically high total counts (∽106) per channel (CH). Except the high background in the EELS spectrum, the last two limitations may be circumvented, and the S/N ratio may be attained by the improvement in the on-line acquisition procedures. This short report addresses such procedures.


2013 ◽  
Vol 133 (12) ◽  
pp. 2236-2242 ◽  
Author(s):  
Masaki Kobayashi ◽  
Yasunori Nagasaka ◽  
Yoshio Itoh
Keyword(s):  

Author(s):  
Qiusheng WANG ◽  
Xiaolan GU ◽  
Yingyi LIU ◽  
Haiwen YUAN

Author(s):  
Jinguang HAO ◽  
Gang WANG ◽  
Lili WANG ◽  
Honggang WANG
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document