Thermal comfort and IAQ assessment of under-floor air distribution system integrated with personalized ventilation in hot and humid climate

2010 ◽  
Vol 45 (9) ◽  
pp. 1906-1913 ◽  
Author(s):  
Ruixin Li ◽  
S.C. Sekhar ◽  
A.K. Melikov
Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1596 ◽  
Author(s):  
Csáky ◽  
Kalmár ◽  
Kalmár

Using personalized ventilation systems in office buildings, important energy saving might be obtained, which may improve the indoor air quality and thermal comfort sensation of occupants at the same time. In this paper, the operation testing results of an advanced personalized ventilation system are presented. Eleven different air terminal devices were analyzed. Based on the obtained air velocities and turbulence intensities, one was chosen to perform thermal comfort experiments with subjects. It was shown that, in the case of elevated indoor temperatures, the thermal comfort sensation can be improved considerably. A series of measurements were carried out in order to determine the background noise level and the noise generated by the personalized ventilation system. It was shown that further developments of the air distribution system are needed.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8130
Author(s):  
Ziwen Dong ◽  
Liting Zhang ◽  
Yongwen Yang ◽  
Qifen Li ◽  
Hao Huang

Stratified air distribution systems are commonly used in large space buildings. The research on the airflow organization of stratified air conditioners is deficient in terms of the analysis of multivariable factors. Moreover, studies on the coupled operation of stratified air conditioners and natural ventilation are few. In this paper, taking a Shanghai Airport Terminal departure hall for the study, air distribution and thermal comfort of the cross-section at a height of 1.6 m are simulated and compared under different working conditions, and the effect of natural ventilation coupling operation is studied. The results show that the air distribution is the most uniform and the thermal comfort is the best (predicted mean vote is 0.428, predicted percentage of dissatisfaction is 15.2%) when the working conditions are 5.9% air supply speed, 11 °C cooling temperature difference and 0° air supply angle. With the coupled operation of natural ventilation, the thermal comfort can be improved from Grade II to Grade I.


2012 ◽  
Vol 48 ◽  
pp. 7-14 ◽  
Author(s):  
Nastaran Makaremi ◽  
Elias Salleh ◽  
Mohammad Zaky Jaafar ◽  
AmirHosein GhaffarianHoseini

2014 ◽  
Vol 20 (7) ◽  
pp. 731-737 ◽  
Author(s):  
Fu-Jen Wang ◽  
Meng-Chieh Lee ◽  
Tong-Bou Chang ◽  
Yong-Sheng Chen ◽  
Ron-Chin Jung

2019 ◽  
Vol 203 ◽  
pp. 109448 ◽  
Author(s):  
Kuniaki Mihara ◽  
Chandra Sekhar ◽  
Yuichi Takemasa ◽  
Bertrand Lasternas ◽  
Kwok Wai Tham

2005 ◽  
Vol 11 (4) ◽  
pp. 603-620 ◽  
Author(s):  
S. C. Sekhar ◽  
N. Gong ◽  
K. W. Tham ◽  
K. W. Cheong ◽  
A. K. Melikov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document