Energy flexibility for heating and cooling in traditional Chinese dwellings based on adaptive thermal comfort: A case study in Nanjing

2020 ◽  
Vol 179 ◽  
pp. 106952
Author(s):  
Chengcheng Xu ◽  
Shuhong Li ◽  
Xiaosong Zhang
2019 ◽  
Vol 11 (2) ◽  
pp. 328 ◽  
Author(s):  
Aiman Albatayneh ◽  
Dariusz Alterman ◽  
Adrian Page ◽  
Behdad Moghtaderi

The building industry is regarded a major contributor to climate change as energy consumption from buildings accounts for 40% of the total energy. The types of thermal comfort models used to predict the heating and cooling loads are critical to save energy in operative buildings and reduce greenhouse gas emissions (GHG). In this research, the internal air temperatures were recorded for over one year under the free floating mode with no heating or cooling, then the number of hours required for heating or cooling were calculated based on fixed sets of operative temperatures (18 °C–24 °C) and the adaptive thermal comfort model to estimate the number of hours per year required for cooling and heating to sustain the occupants’ thermal comfort for four full-scale housing test modules at the campus of the University of Newcastle, Australia. The adaptive thermal comfort model significantly reduced the time necessary for mechanical cooling and heating by more than half when compared with the constant thermostat setting used by the air-conditioning systems installed on the site. It was found that the air-conditioning system with operational temperature setups using the adaptive thermal comfort model at 80% acceptability limits required almost half the operating energy when compared with fixed sets of operating temperatures. This can be achieved by applying a broader range of acceptable temperature limits and using techniques that require minimal energy to sustain the occupants’ thermal comfort.


2018 ◽  
Vol 10 (9) ◽  
pp. 3091 ◽  
Author(s):  
Raúl Castaño-Rosa ◽  
Carlos Rodríguez-Jiménez ◽  
Carlos Rubio-Bellido

The design and construction of buildings is currently subject to a growing set of requirements concerning sustainability and energy efficiency. This paper shows a case study of the Torre Sevilla skyscraper, located in the city of Seville (in the south of Spain), which has high-tech energy-efficient features and which uses air-conditioning systems during most of its operating hours. The analysis carried out starts from a simulation in which occupants’ thermal comfort are obtained, based on the adaptive comfort model defined in the standard EN 15251:2007. With this approach, it is possible to determine the number of hours during operation in which the building has adequate comfort conditions only with the help of the envelope and natural ventilation. Consequently, the remaining useful hours require the use of air-conditioning systems. The results show that it is possible to improve the thermal performance of the building due to its location in the Mediterranean climate. To do this, advanced mixed mode (through manual-opening or mechanically-controlled opening windows) and active air-conditioning are suggested. This experimental proposal provides a reduction of the occupation hours which require the use of air-conditioning equipment by 28.57%, reducing the air-conditioning demand and, consequently, the energy consumption of the building.


2019 ◽  
Vol 15 (2) ◽  
pp. 14-25
Author(s):  
Hom B. Rijal ◽  
Michael A. Humphreys ◽  
J. Fergus Nicol

Office workers use a variety of adaptive opportunities to regulate their indoor thermal environment. The behavioural adaptations such as window opening, clothing adjustments, and use of heating/cooling are important factors for adaptive thermal comfort. It is well-known that they are the most important contributors in the adaptive thermal comfort model. Thus, if we understand the behavioural adaptation properly, we can explain the mechanism of the adaptive model. The indoor thermal environment is often adjusted using the air conditioning in Japanese office buildings to improve thermal comfort and productivity. Thus, it is necessary to conduct research on the behavioural adaptation in the offices because the occupant behavior is different from behaviour in dwellings. In order to record the seasonal differences in behavioural adaptation and to develop an adaptive algorithm for Japanese offices, we measured temperatures in 11 office buildings and conducted the thermal comfort and occupant behaviour survey for over a year. We collected 4,660 samples from about 1,350 people. The proportion of ‘open window’ in the free running mode (neither heating nor cooling being used) is significantly higher than that of the air conditioned mode. The behavioural adaptation is related to the outdoor air temperature. The behavioural adaptations such as window-opening, heating and cooling use predicted by regression analysis are in good agreement with the measured data. These findings can be applied to building thermal simulation to predict the behavioural adaptation and energy use in office buildings.


2021 ◽  
Vol 13 (5) ◽  
pp. 2987
Author(s):  
Raúl Castaño-Rosa ◽  
Roberto Barrella ◽  
Carmen Sánchez-Guevara ◽  
Ricardo Barbosa ◽  
Ioanna Kyprianou ◽  
...  

The intensity and duration of hot weather and the number of extreme weather events, such as heatwaves, are increasing, leading to a growing need for space cooling energy demand. Together with the building stock’s low energy performance, this phenomenon may also increase households’ energy consumption. On the other hand, the low level of ownership of cooling equipment can cause low energy consumption, leading to a lack of indoor thermal comfort and several health-related problems, yet increasing the risk of energy poverty in summer. Understanding future temperature variations and the associated impacts on building cooling demand will allow mitigating future issues related to a warmer climate. In this respect, this paper analyses the effects of change in temperatures in the residential sector cooling demand in 2050 for a case study of nineteen cities across seven countries: Cyprus, Finland, Greece, Israel, Portugal, Slovakia, and Spain, by estimating cooling degree days and hours (CDD and CDH). CDD and CDH are calculated using both fixed and adaptive thermal comfort temperature thresholds for 2020 and 2050, understanding their strengths and weaknesses to assess the effects of warmer temperatures. Results suggest a noticeable average increase in CDD and CDH values, up to double, by using both thresholds for 2050, with a particular interest in northern countries where structural modifications in the building stock and occupants’ behavior should be anticipated. Furthermore, the use of the adaptive thermal comfort threshold shows that the projected temperature increases for 2050 might affect people’s capability to adapt their comfort band (i.e., indoor habitability) as temperatures would be higher than the maximum admissible values for people’s comfort and health.


Sign in / Sign up

Export Citation Format

Share Document