residential sector
Recently Published Documents


TOTAL DOCUMENTS

770
(FIVE YEARS 270)

H-INDEX

48
(FIVE YEARS 9)

Energy ◽  
2022 ◽  
Vol 243 ◽  
pp. 122994
Author(s):  
Vassilis Daioglou ◽  
Efstratios Mikropoulos ◽  
David Gernaat ◽  
Detlef P. van Vuuren

Energy Policy ◽  
2022 ◽  
Vol 161 ◽  
pp. 112759
Author(s):  
Konstantinos Koasidis ◽  
Vangelis Marinakis ◽  
Alexandros Nikas ◽  
Katerina Chira ◽  
Alexandros Flamos ◽  
...  

2022 ◽  
Author(s):  
Peter Berrill ◽  
Eric J.H. Wilson ◽  
Janet Reyna ◽  
Anthony D. Fontanini ◽  
Edgar Hertwich

Abstract Residential GHG emissions in the United States are driven in part by a housing stock where on-site fossil combustion is common, home sizes are large by international standards, energy efficiency potential is large, and electricity generation in many regions is GHG-intensive. In this analysis we assess decarbonization pathways for the United States residential sector to 2060, through 108 scenarios describing housing stock evolution, new housing characteristics, renovation levels, and clean electricity. The lowest emission scenarios rely on very rapid decarbonization of electricity supply alongside extensive renovations to existing homes—focused on improving thermal envelopes and heat pump electrification of heating. Reducing the size, increasing the multifamily share, and increasing the electrification of new homes provide further emission cuts, and combining all strategies enables emissions reductions of 91% between 2020 and 2050. Construction becomes the main source of emissions in the most ambitious scenarios, motivating increased attention on reducing embodied emissions.


Nature Energy ◽  
2022 ◽  
Author(s):  
Di Wu ◽  
Haotian Zheng ◽  
Qing Li ◽  
Ling Jin ◽  
Rui Lyu ◽  
...  

AbstractThe combustion of solid fuels, including coal and biomass, is a main anthropogenic source of atmospheric particulate matter (PM). The hidden costs have been underestimated due to lack of consideration of the toxicity of PM. Here we report the unequal toxicity of inhalable PM emitted from energy use in the residential sector and coal-fired power plants (CFPPs). The incomplete burning of solid fuels in household stoves generates much higher concentrations of carbonaceous matter, resulting in more than one order of magnitude greater toxicity than that from CFPPs. When compared with CFPPs, the residential sector consumed only a tenth of solid fuels in mainland China in 2017, but it contributed about 200-fold higher of the population-weighted toxic potency-adjusted PM2.5 exposure risk. We suggest that PM2.5-related toxicity should be considered when making air pollution emission control strategies, and incomplete combustion sources should receive more policy attention to reduce exposure risks.


2021 ◽  
Vol 12 (1) ◽  
pp. 62
Author(s):  
Muhammad Mahboob ◽  
Muzaffar Ali ◽  
Tanzeel ur Rashid ◽  
Rabia Hassan

The energy demand of developing countries increases every year. Large amounts of energy are consumed during the production and transportation of construction materials. Conservation of energy became important in the perspective of limiting carbon emissions into the environment and for decreasing the cost of materials. This article is concentrated on some issues affecting the embodied energy of construction materials mainly in the residential sector. Energy consumption in three various wall structures has been made. The comparison demonstrated that the embodied energy of traditional wall structures is 3-times higher than the energy efficient building materials. CO2 emissions produced by conventional materials and green building materials are 54.96 Kg CO2/m2 and 35.33 Kg CO2/m2, respectively. Finally, the results revealed substantial difference in embodied energy and carbon footprints of materials for which its production involves a high amount of energy consumption.


2021 ◽  
Vol 32 (4) ◽  
pp. 11-27
Author(s):  
Farzad Ghayoor ◽  
Andrew Swanson ◽  
Hudson Sibanda

Many countries, including South Africa, have introduced policies and incentives to increase their renewable energy capacities in order to address environmental concerns and reduce pollutant emissions into the atmosphere. In addition, consumers in South Africa have faced the ever-increasing price of electricity and unreliability of the grid since 2007 due to the lack of sufficient electricity production. As a result, employing hybrid renewable energy systems (HRESs) have gained popularity. This research focuses on grid-connected HRESs based on solar photovoltaic (PV) panels and wind turbines as a potential way of reducing the dependency of residential sector consumers on the grid. It aims to identify the optimal sizing of renewable energy sources to be cost-effective for consumers over a certain period of time, using Durban as a case study. Two artificial intelligence methods have been used to obtain the optimal sizing for the available PV panels, wind turbines and inverters. The results shown that the combination of PV panels and battery storage can be a profitable option. A system using higher rated power PV panels can start to become profitable in a shorter lifetime, but employing batteries can only be cost-effective if a long enough lifetime is considered.


Sign in / Sign up

Export Citation Format

Share Document