Coordinated demand-controlled ventilation strategy for energy-efficient operation in multi-zone cleanroom air-conditioning systems

2021 ◽  
pp. 107588
Author(s):  
Chaoqun Zhuang ◽  
Kui Shan ◽  
Shengwei Wang
2008 ◽  
Vol 12 (3) ◽  
pp. 15-32 ◽  
Author(s):  
Parameshwaran Rajagopalan ◽  
Karunakaran Rajasekaran ◽  
Senthilkumar Alagarsamy ◽  
S. Iniyan ◽  
Mohal Lal

In the quest for energy conservative building design, there is now a great opportunity for a flexible and sophisticated air conditioning system capable of addressing better thermal comfort, indoor air quality, and energy efficiency, that are strongly desired. The variable refrigerant volume air conditioning system provides considerable energy savings, cost effectiveness and reduced space requirements. Applications of intelligent control like fuzzy logic controller, especially adapted to variable air volume air conditioning systems, have drawn more interest in recent years than classical control systems. An experimental analysis was performed to investigate the inherent operational characteristics of the combined variable refrigerant volume and variable air volume air conditioning systems under fixed ventilation, demand controlled ventilation, and combined demand controlled ventilation and economizer cycle techniques for two seasonal conditions. The test results of the variable refrigerant volume and variable air volume air conditioning system for each techniques are presented. The test results infer that the system controlled by fuzzy logic methodology and operated under the CO2 based mechanical ventilation scheme, effectively yields 37% and 56% per day of average energy-saving in summer and winter conditions, respectively. Based on the experimental results, the fuzzy based combined system can be considered to be an alternative energy efficient air conditioning scheme, having significant energy-saving potential compared to the conventional constant air volume air conditioning system.


2017 ◽  
Author(s):  
Behrang Chenari ◽  
Francisco Bispo Lamas ◽  
Adélio Rodrigues Gaspar ◽  
Manuel Gameiro da Silva

A significant amount of energy is being used by ventilation and air conditioning systems to maintain the indoor environmental condition in a satisfactory and comfortable level. Many buildings, either new or existing (throughout their renovation process) are subjected to energy efficiency requirements but these must not be in the expenses of indoor environmental conditions. For instance, indoor air quality (IAQ) has to be considered while improving energy efficiency, otherwise occupants might be exposed to inappropriate indoor environment.Demand-controlled ventilation (DCV) is a method that provides comfortable IAQ level with lowest energy use. In this paper, the main objective is developing a new CO2-based DCV strategy and simulating it using EnergyPlus. The IAQ and energy consumption associated to this strategy have been compared with the results of CO2-based DCV strategies previously developed by the same authors in another article. The comparison shows that the new strategy performs better, both in energy use and IAQ. The recorded energy savings ranged between 6-14% comparing with the previously developed strategies while IAQ slightly improved.


2014 ◽  
Vol 493 ◽  
pp. 74-79
Author(s):  
Y.A. Sabtalistia ◽  
S.N.N. Ekasiwi ◽  
B. Iskandriawan

Energy consumption for air conditioning systems (air conditioning system) increased along with the increasing need for fresh air and comfortable in the room especially apartments. FAC system (Floor Air Conditioning) is growing because it is more energy efficient than CAC (Ceiling Air Conditioning) system. However, the position of the AC supply is on the lower level at the FAC system causes draft discomfort becomes greater as air supply closer to the occupants so that thermal comfort can be reduced. Heat mixture of windows, exterior walls, kitchen, and occupants in the studio apartment affect thermal comfort in the room too.This study aims to determine the position of the AC supply which has the best thermal comfort of FAC system in the studio apartment. It can be done by analyzing ADPI (Air Diffusion Performance Index), the distribution of air temperature, wind speed, RH (Relative Humidity), and DR (Draft Risk) to change the position of the AC supply supported by CFD (Computational Fluid Dynamics) simulation.This result prove that AC position 2 (on wall near the kitchen) is more comfortable than AC position 1 (on the bathroom wall) because AC position 2 away from occupied areas, thereby reducing the occurrence of draught discomfort.


2017 ◽  
Vol 11 (21) ◽  
pp. 103
Author(s):  
Ricardo A. Lugo-Villalba ◽  
Mario Álvarez Guerra ◽  
Bienvenido Sarria López

The development of ship propulsion in the areas of Economic Operation, Environmental Protection and Ship Efficiency (Triple E - Economy, Environment, Efficiency) is the comparison standard of the manufacturers of contemporary ships. The standard is based on the application of a more modern design of the diesel engines, the wide use of waste heat and the efficient operation of the ship.In accordance with the Economic Operation, the need to evaluate the design of air conditioning systems has been identified in order to determine the possible savings, which are represented by a decrease in fuel consumption, as a result of: the significant impact of this consumption in the operation of the ship, the current high costs of this energy, the periodic increase in the price of the same, and the international policies for the reduction of emissions to the atmosphere and preservation of the environment.By means of the energy diagnosis of the air conditioning system it is possible to determine the possible opportunities of energy saving during the operation of the ship.The results indicate that the thermal load and the cooling capacity required by the air conditioned spaces have a difference between their maximum and average value of 14%. This justifies the need to use a conditioning system with a variable volume of air supplied to the air conditioned space.


Sign in / Sign up

Export Citation Format

Share Document