Assessment of Digital Elevation Model (DEM) aggregation methods for hydrological modeling: Lake Chad basin, Africa

2009 ◽  
Vol 35 (8) ◽  
pp. 1661-1670 ◽  
Author(s):  
Mathieu Le Coz ◽  
François Delclaux ◽  
Pierre Genthon ◽  
Guillaume Favreau
2018 ◽  
Author(s):  
Ralf Loritz ◽  
Hoshin Gupta ◽  
Conrad Jackisch ◽  
Martijn Westhoff ◽  
Axel Kleidon ◽  
...  

Abstract. The increasing diversity and resolution of spatially distributed data on terrestrial systems greatly enhances the potential of hydrological modeling. Optimal and parsimonious use of these data sources implies, however, that we better understand (a) which system characteristics exert primary controls on hydrological dynamics and (b) to what level of detail do those characteristics need to be represented in a model. In this study we develop and test an approach to explore these questions that draws upon information theoretic and thermodynamic reasoning, using spatially distributed topographic information as a straightforward example. Specifically, we subdivide a meso-scale catchment into 105 hillslopes and represent each by a two dimensional numerical hillslope model. These hillslope models differ exclusively with respect to topography related parameters derived from a digital elevation model; the remaining setup and meteorological forcing for each are identical. We analyze the degree of similarity of simulated discharge and storage among the hillslopes as a function of time by examining the Shannon information entropy. We furthermore derive a compressed catchment model by clustering the hillslope models into functional groups of similar runoff generation using normalized mutual information as a distance measure. Our results reveal that, within our given model environment, only a portion of the entire amount of topographic information stored within a digital elevation model is relevant for the simulation of distributed runoff and storage dynamics. This manifests through a possible compression of the model ensemble from the entire set of 105 hillslopes to only 6 hillslopes, each representing a different functional group, which leads to no substantial loss in model performance. Importantly, we find that the concept of hydrological similarity is not necessarily time-invariant. On the contrary, the Shannon entropy as measure for diversity in the simulation ensemble shows a distinct annual pattern, with periods of highly redundant simulations, reflecting coherent and organized dynamics, and periods where hillslopes operate in distinctly different ways. We conclude that the proposed approach provides a powerful framework for understanding and diagnosing how and when process organization and functional similarity of hydrological systems emerges in time. Our approach is neither restricted to the model, nor to model targets or the data source we selected in this study. Overall, we propose that the concepts of hydrological systems acting similarly (and thus giving rise to redundancy) or displaying unique functionality (and thus being irreplaceable) are not mutually exclusive. They are in fact of complementary nature, and systems operate by gradually changing to different levels of organization in time.


2020 ◽  
Vol 12 (5) ◽  
pp. 745 ◽  
Author(s):  
Shuai Zhang ◽  
Huilin Gao

Satellite remote sensing of near real-time reservoir storage variations has important implications for flood monitoring and water resources management. However, satellite altimetry data, which are essential for estimating storage variations, are only available for a limited number of reservoirs. This lack of high-density spatial coverage directly hinders the potential use of remotely sensed reservoir information for improving the skills of hydrological modeling over highly regulated river basins. To solve this problem, a reservoir storage dataset with high-density spatial coverage was developed by combining the water surface area estimated from Moderate Resolution Imaging Spectroradiometer (MODIS) imageries with the Digital Elevation Model (DEM) data collected by the Shuttle Radar Topography Mission (SRTM). By including more reservoirs, this reservoir dataset represents 46.6% of the overall storage capacity in South Asia. The results were validated over five reservoirs where gauge observations are accessible. The storage estimates agree well with observations, with coefficients of determination ranging from 0.47 to 0.91 and normalized root mean square errors (NRMSE) ranging from 15.46% to 37.69%. Given the general availability of MODIS and SRTM data, this algorithm can be potentially applied for monitoring global reservoirs at a high density.


2013 ◽  
Vol 59 (217) ◽  
pp. 925-937 ◽  
Author(s):  
Christian Kienholz ◽  
Regine Hock ◽  
Anthony A. Arendt

AbstractMany glaciological and hydrological studies require outlines of individual glaciers rather than total ice cover. Here we develop a new semiautomatic algorithm that uses a digital elevation model (DEM) and outlines of glacier complexes to calculate the extents of individual glaciers. The algorithm first applies hydrological modeling tools to a modified DEM to calculate flowsheds. It then merges flowsheds that belong to individual glaciers using a distance-based approach, whose required empirical parameters are derived from the Juneau Icefield area in Alaska. In this region, 2% of ∼1300 glaciers were misclassified. The algorithm was validated on >25 000 km2 of ice in other regions in Alaska and on >40 000 km2 of ice in Arctic Canada, resulting in ∼2% and ∼3% misclassified glaciers, respectively. Results indicate that the algorithm is robust provided the DEM and the outlines are of good quality.


2018 ◽  
Vol 22 (7) ◽  
pp. 3663-3684 ◽  
Author(s):  
Ralf Loritz ◽  
Hoshin Gupta ◽  
Conrad Jackisch ◽  
Martijn Westhoff ◽  
Axel Kleidon ◽  
...  

Abstract. The increasing diversity and resolution of spatially distributed data on terrestrial systems greatly enhance the potential of hydrological modeling. Optimal and parsimonious use of these data sources requires, however, that we better understand (a) which system characteristics exert primary controls on hydrological dynamics and (b) to what level of detail do those characteristics need to be represented in a model. In this study we develop and test an approach to explore these questions that draws upon information theoretic and thermodynamic reasoning, using spatially distributed topographic information as a straightforward example. Specifically, we subdivide a mesoscale catchment into 105 hillslopes and represent each by a two-dimensional numerical hillslope model. These hillslope models differ exclusively with respect to topography-related parameters derived from a digital elevation model (DEM); the remaining setup and meteorological forcing for each are identical. We analyze the degree of similarity of simulated discharge and storage among the hillslopes as a function of time by examining the Shannon information entropy. We furthermore derive a “compressed” catchment model by clustering the hillslope models into functional groups of similar runoff generation using normalized mutual information (NMI) as a distance measure. Our results reveal that, within our given model environment, only a portion of the entire amount of topographic information stored within a digital elevation model is relevant for the simulation of distributed runoff and storage dynamics. This manifests through a possible compression of the model ensemble from the entire set of 105 hillslopes to only 6 hillslopes, each representing a different functional group, which leads to no substantial loss in model performance. Importantly, we find that the concept of hydrological similarity is not necessarily time invariant. On the contrary, the Shannon entropy as measure for diversity in the simulation ensemble shows a distinct annual pattern, with periods of highly redundant simulations, reflecting coherent and organized dynamics, and periods where hillslopes operate in distinctly different ways. We conclude that the proposed approach provides a powerful framework for understanding and diagnosing how and when process organization and functional similarity of hydrological systems emerge in time. Our approach is neither restricted to the model nor to model targets or the data source we selected in this study. Overall, we propose that the concepts of hydrological systems acting similarly (and thus giving rise to redundancy) or displaying unique functionality (and thus being irreplaceable) are not mutually exclusive. They are in fact of complementary nature, and systems operate by gradually changing to different levels of organization in time.


2018 ◽  
Vol 12 (5-6) ◽  
pp. 50-57 ◽  
Author(s):  
I. S. Voskresensky ◽  
A. A. Suchilin ◽  
L. A. Ushakova ◽  
V. M. Shaforostov ◽  
A. L. Entin ◽  
...  

To use unmanned aerial vehicles (UAVs) for obtaining digital elevation models (DEM) and digital terrain models (DTM) is currently actively practiced in scientific and practical purposes. This technology has many advantages: efficiency, ease of use, and the possibility of application on relatively small area. This allows us to perform qualitative and quantitative studies of the progress of dangerous relief-forming processes and to assess their consequences quickly. In this paper, we describe the process of obtaining a digital elevation model (DEM) of the relief of the slope located on the bank of the Protva River (Satino training site of the Faculty of Geography, Lomonosov Moscow State University). To obtain the digital elevation model, we created a temporary geodetic network. The coordinates of the points were measured by the satellite positioning method using a highprecision mobile complex. The aerial survey was carried out using an unmanned aerial vehicle from a low altitude (about 40–45 m). The processing of survey materials was performed via automatic photogrammetry (Structure-from-Motion method), and the digital elevation model of the landslide surface on the Protva River valley section was created. Remote sensing was supplemented by studying archival materials of aerial photography, as well as field survey conducted immediately after the landslide. The total amount of research results made it possible to establish the causes and character of the landslide process on the study site. According to the geomorphological conditions of formation, the landslide refers to a variety of landslideslides, which are formed when water is saturated with loose deposits. The landslide body was formed with the "collapse" of the blocks of turf and deluvial loams and their "destruction" as they shifted and accumulated at the foot of the slope.


Sign in / Sign up

Export Citation Format

Share Document