Transfer of height datum across seas using GPS leveling, gravimetric geoid and corrections based on a polynomial surface

2013 ◽  
Vol 51 ◽  
pp. 135-142 ◽  
Author(s):  
Xingsheng Deng ◽  
Xianghong Hua ◽  
Yangsheng You
2022 ◽  
Vol 9 ◽  
Author(s):  
Hamad Al-Ajami ◽  
Ahmed Zaki ◽  
Mostafa Rabah ◽  
Mohamed El-Ashquer

A new gravimetric geoid model, the KW-FLGM2021, is developed for Kuwait in this study. This new geoid model is driven by a combination of the XGM2019e-combined global geopotential model (GGM), terrestrial gravity, and the SRTM 3 global digital elevation model with a spatial resolution of three arc seconds. The KW-FLGM2021 has been computed by using the technique of Least Squares Collocation (LSC) with Remove-Compute-Restore (RCR) procedure. To evaluate the external accuracy of the KW-FLGM2021 gravimetric geoid model, GPS/leveling data were used. As a result of this evaluation, the residual of geoid heights obtained from the KW-FLGM2021 geoid model is 2.2 cm. The KW-FLGM2021 is possible to be recommended as the first accurate geoid model for Kuwait.


Author(s):  
Q. Qiao

Since the proposal of Digital Earth, its research and applications are continuing to be deepened, and now Smart City is more indepth implementation of the Digital Earth. The unification of global or regional vertical datums has always been one of the main geodesy studies to achieve Smart City, as Smart City must first realize the seamless integration of multi-source geo-dataset. This paper introduces spatio-temporal data management and interactive visualization into the entire process of vertical datum modelling. We demonstrate that the efficiency of modelling is greatly improved. In this paper GIS database is used to manage all dataset such as tidal station data, gravity field model data, GPS leveling data, and vertical datum data for evaluation and analysis. We use geographic information visualization technique to graphically display the results, together with the interactive browsing, to convert tedious digital information to easy-to-understand images. Consequently, researchers can quickly and comprehensively grasp the macro and micro information. Finally, an efficient and interactive prototype operating platforms for vertical datum modeling is constructed based on GIS.


2020 ◽  
Author(s):  
Tao Jiang ◽  
Yamin Dang ◽  
Chuanyin Zhang

<p>Airborne gravimetry has become increasingly important for geoid modeling because of its capability of collecting large scale gravity data over difficult areas. In order to quantify the contribution of airborne gravity data for geoid determination, two regions with distinct topographical condition, a hilly desert area in Mu Us of China and a mountainous region in Colorado of the USA were selected for gravimetric geoid modeling experiment. The gravimetric geoid model computed by combining satellite gravity model, terrestrial and airborne gravity data fits with GPS leveling data to 0.8 cm for Mu Us case and 5.3 cm for Colorado case. The contribution of airborne gravity data to the signal and accuracy improvement of the geoid was quantitatively evaluated for different spatial distribution and density of terrestrial gravity data. The results demonstrate that in the cases of the spacing of terrestrial gravity points exceeds 15 km, the additions of airborne gravity data improve the accuracies of gravimetric geoid models by 11.1%~48.3% for Mu Us case and 13%~20% for Colorado case.</p>


Sign in / Sign up

Export Citation Format

Share Document