ETH–GM21: A new gravimetric geoid model of Ethiopia developed using the least-squares collocation method

Author(s):  
Yalew Ephrem ◽  
Walyeldeen Godah ◽  
Malgorzata Szelachowska ◽  
Robert Tenzer
2022 ◽  
Vol 9 ◽  
Author(s):  
Hamad Al-Ajami ◽  
Ahmed Zaki ◽  
Mostafa Rabah ◽  
Mohamed El-Ashquer

A new gravimetric geoid model, the KW-FLGM2021, is developed for Kuwait in this study. This new geoid model is driven by a combination of the XGM2019e-combined global geopotential model (GGM), terrestrial gravity, and the SRTM 3 global digital elevation model with a spatial resolution of three arc seconds. The KW-FLGM2021 has been computed by using the technique of Least Squares Collocation (LSC) with Remove-Compute-Restore (RCR) procedure. To evaluate the external accuracy of the KW-FLGM2021 gravimetric geoid model, GPS/leveling data were used. As a result of this evaluation, the residual of geoid heights obtained from the KW-FLGM2021 geoid model is 2.2 cm. The KW-FLGM2021 is possible to be recommended as the first accurate geoid model for Kuwait.


2021 ◽  
Vol 1715 ◽  
pp. 012029
Author(s):  
Sergey Golushko ◽  
Vasily Shapeev ◽  
Vasily Belyaev ◽  
Luka Bryndin ◽  
Artem Boltaev ◽  
...  

2011 ◽  
Vol 37 (1) ◽  
pp. 5-14 ◽  
Author(s):  
Ahmed Abdalla ◽  
Robert Tenzer

We compile a new geoid model at the computation area of New Zealand and its continental shelf using the method developed at the Royal Institute of Technology (KTH) in Stockholm. This method utilizes the least-squares modification of the Stokes integral for the biased, unbiased, and optimum stochastic solutions. The modified Bruns-Stokes integral combines the regional terrestrial gravity data with a global geopotential model (GGM). Four additive corrections are calculated and applied to the approximate geoid heights in order to obtain the gravimetric geoid. These four additive corrections account for the combined direct and indirect effects of topography and atmosphere, the contribution of the downward continuation reduction, and the formulation of the Stokes problem in the spherical approximation. The gravimetric geoid model is computed using two heterogonous gravity data sets: the altimetry-derived gravity anomalies from the DNSC08 marine gravity database (offshore) and the ground gravity measurements from the GNS Science gravity database (onshore). The GGM coefficients are taken from EIGEN-GRACE02S complete to degree 65 of spherical harmonics. The topographic heights are generated from the 1×1 arc-sec detailed digital terrain model (DTM) of New Zealand and from the 30×30 arc-sec global elevation data of SRTM30_PLUS V5.0. The least-squares analysis is applied to combine the gravity and GPS-levelling data using a 7-parameter model. The fit of the KTH geoid model with GPS-levelling data in New Zealand is 7 cm in terms of the standard deviation (STD) of differences. This STD fit is the same as the STD fit of the NZGeoid2009, which is the currently adopted official quasigeoid model for New Zealand. Santrauka Stokholmo Karališkajame technologijos institute (KTH) sukurtu metodu apskaičiuotas naujas Naujosios Zelandijos ir kontinentinio šelfo geoido modelis. Taikoma Stokso integralo mažiausiųjų kvadratų modifikacija, įvertinant paklaidas ir jų nevertinant bei ieškant optimalių stochastinių sprendinių. Modifikuotas Bruno ir Stokso integralas sieja regioninius žemyninius gravimetrinius duomenis su globaliuoju geopotencialo modeliu (GGM). Gravimetriniam geoidui gauti skaičiuojamos keturios papildomos pataisos: topografinės situacijos ir atmosferos tiesioginės ir netiesioginės įtakos, redukcijos įtakos ir Stokso integralo taikymo sferiniam paviršiui. Gravimetrinis geoido modelis apskaičiuotas pagal du duomenų rinkinius: DNSC08 jūrinių gravimetrinių duomenų bazėje (šelfas) esančias altimetriniu metodu nustatytas sunkio pagreičio anomalijas ir žemyninės dalies gravimetrinių matavimų duomenis iš GNS gravimetrinės duomenų bazės (pakrantė). GGM koeficientai imti iš EIGEN-GRACE02S modelio sferinių iki 65 laipsnio harmonikų. Topografiniai aukščiai sugeneruoti iš Naujosios Zelandijos 1×1 sekundės detaliojo skaitmeninio reljefo modelio ir iš 30×30 sekundžių globaliojo aukščių modelio SRTM30_PLUS V5.0. Gravimetriniams ir GPS niveliacijos duomenims sujungti taikytas mažiausiųjų kvadratų 7 parametrų metodas. KTH metodu sudaryto geoido modelio vidutinė kvadratinė paklaida 7 cm. Tai sutampa su NZGeoid 2009 geoido modelio, taikomo Naujoje Zelandijoje, tikslumu. Резюме Модель геоида континентального шельфа Новой Зеландии построена с применением метода, созданного в Королевском технологическом институте Стокгольма. Данный метод основан на модификации решения интеграла Стокса методом наименьших квадратов с оценкой или без оценки погрешностей и поиском оптимальных статистических решений. Модифицированный интеграл БрунаСтокса объединяет региональные надземные гравиметрические данные с глобальной геопотенциальной моделью (GGM). Для определения гравиметрического геоида вычисляются дополнительные поправки прямого и косвенного влияния топографии и атмосферы, редукции и применения проблемы Стокса для сферической поверхности. Гравиметрическая модель геоида вычисляется на основе двух баз данных: альтиметрическим методом определенных аномалий силы тяжести в базе морских гравиметрических данных DNSC08 (шельф) и надземной части гравиметрических измерений из базы данных GNS. Коэффициенты GGM взяты из сферических гармоник до 65 степени модели EIGENGRACEO2S. Топографические высоты сгенерированы из детальной цифровой модели рельефа Новой Зеландии с сеткой 1×1 секунду и из глобальной модели высот SRTM30_PLUSv5.0 с сеткой 30×30 секунд. Для объединения гравиметрических и GPSнивелирных данных применялся метод наименьших квадратов с 7 параметрами. Среднеквадратическая погрешность модели геоида, созданной по методу КТН, равна 7 см. Точность аналогична точности применяемой в Новой Зеландии модели геоида NZGeoid2009.


2017 ◽  
Vol 28 (01) ◽  
pp. 1750011
Author(s):  
Ayşe Gül Kaplan ◽  
Yılmaz Dereli

In this paper, the generalized equal width wave (GEW) equation is solved by using moving least squares collocation (MLSC) method. To test the accuracy of the method some numerical experiments are presented. The motion of single solitary waves, the interaction of two solitary waves and the Maxwellian initial condition problems are chosen as test problems. For the single solitary wave motion whose analytical solution was known [Formula: see text], [Formula: see text] error norms and pointwise rates of convergence were calculated. Also mass, energy and momentum invariants were calculated for every test problems. Obtained numerical results are compared with some earlier works. It is seen that the method is very efficient and reliable due to obtained numerical results are very satisfactorily. Stability analysis of difference equation was done by applying the moving least squares collocation method for GEW equation.


Sign in / Sign up

Export Citation Format

Share Document