scholarly journals Joint event location and velocity model update in real-time for downhole microseismic monitoring: A deep learning approach

2021 ◽  
pp. 104965
Author(s):  
Daniel Wamriew ◽  
Marwan Charara ◽  
Dimitri Pissarenko
2021 ◽  
Vol 1828 (1) ◽  
pp. 012001
Author(s):  
Yeoh Keng Yik ◽  
Nurul Ezaila Alias ◽  
Yusmeeraz Yusof ◽  
Suhaila Isaak

2018 ◽  
Vol 6 (3) ◽  
pp. SH39-SH48 ◽  
Author(s):  
Wojciech Gajek ◽  
Jacek Trojanowski ◽  
Michał Malinowski ◽  
Marek Jarosiński ◽  
Marko Riedel

A precise velocity model is necessary to obtain reliable locations of microseismic events, which provide information about the effectiveness of the hydraulic stimulation. Seismic anisotropy plays an important role in microseismic event location by imposing the dependency between wave velocities and its propagation direction. Building an anisotropic velocity model that accounts for that effect allows for more accurate location of microseismic events. We have used downhole microseismic records from a pilot hydraulic fracturing experiment in Lower-Paleozoic shale gas play in the Baltic Basin, Northern Poland, to obtain accurate microseismic events locations. We have developed a workflow for a vertical transverse isotropy velocity model construction when facing a challenging absence of horizontally polarized S-waves in perforation shot data, which carry information about Thomsen’s [Formula: see text] parameter and provide valuable constraints for locating microseismic events. We extract effective [Formula: see text], [Formula: see text] and [Formula: see text], [Formula: see text] for each layer from the P- and SV-wave arrivals of perforation shots, whereas the unresolved [Formula: see text] is retrieved afterward from the SH-SV-wave delay time of selected microseismic events. An inverted velocity model provides more reliable location of microseismic events, which then becomes an essential input for evaluating the hydraulic stimulation job effectiveness in the geomechanical context. We evaluate the influence of the preexisting fracture sets and obliquity between the borehole trajectory and principal horizontal stress direction on the hydraulic treatment performance. The fracturing fluid migrates to previously fractured zones, while the growth of the microseismic volume in consecutive stages is caused by increased penetration of the above-lying lithologic formations.


2019 ◽  
Vol 199 ◽  
pp. 216-222 ◽  
Author(s):  
Seonghyeon Kim ◽  
Seokwoo Kang ◽  
Kwang Ryel Ryu ◽  
Giltae Song

2019 ◽  
Vol 34 (11) ◽  
pp. 4924-4931 ◽  
Author(s):  
Daichi Kitaguchi ◽  
Nobuyoshi Takeshita ◽  
Hiroki Matsuzaki ◽  
Hiroaki Takano ◽  
Yohei Owada ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 982 ◽  
Author(s):  
Hyo Lee ◽  
Ihsan Ullah ◽  
Weiguo Wan ◽  
Yongbin Gao ◽  
Zhijun Fang

Make and model recognition (MMR) of vehicles plays an important role in automatic vision-based systems. This paper proposes a novel deep learning approach for MMR using the SqueezeNet architecture. The frontal views of vehicle images are first extracted and fed into a deep network for training and testing. The SqueezeNet architecture with bypass connections between the Fire modules, a variant of the vanilla SqueezeNet, is employed for this study, which makes our MMR system more efficient. The experimental results on our collected large-scale vehicle datasets indicate that the proposed model achieves 96.3% recognition rate at the rank-1 level with an economical time slice of 108.8 ms. For inference tasks, the deployed deep model requires less than 5 MB of space and thus has a great viability in real-time applications.


Sign in / Sign up

Export Citation Format

Share Document