scholarly journals Fourth-order compact schemes with adaptive time step for monodomain reaction–diffusion equations

2008 ◽  
Vol 216 (1) ◽  
pp. 39-55 ◽  
Author(s):  
E.A. Heidenreich ◽  
J.F. Rodríguez ◽  
F.J. Gaspar ◽  
M. Doblaré
Author(s):  
Florentine Catharina Fleißner

The purpose of this paper is to introduce a Minimizing Movement approach to scalar reaction-diffusion equations of the form \partial_t u \ = \ \Lambda\cdot \mathrm{div}[u(\nabla F'(u) + \nabla V)] \ - \ \Sigma\cdot (F'(u) + V) u, \quad \text{ in } (0, +\infty)\times\Omega, with parameters $\Lambda, \Sigma > 0$ and no-flux boundary condition u(\nabla F'(u) + \nabla V)\cdot {\sf n} \ = \ 0, \quad \text{ on } (0, +\infty)\times\partial\Omega, which is built on their gradient-flow-like structure in the space $\mathcal{M}(\bar{\Omega})$ of finite nonnegative Radon measures on $\bar{\Omega}\subset\xR^d$, endowed with the recently introduced Hellinger-Kantorovich distance $\HK_{\Lambda, \Sigma}$. It is proved that, under natural general assumptions on $F: [0, +\infty)\to\xR$ and $V:\bar{\Omega}\to\xR$, the Minimizing Movement scheme \mu_\tau^0:=u_0\mathscr{L}^d \in\mathcal{M}(\bar{\Omega}), \quad \mu_\tau^n \text{ is a minimizer for } \mathcal{E}(\cdot)+\frac{1}{2\tau}\HK_{\Lambda, \Sigma}(\cdot, \mu_\tau^{n-1})^2, \ n\in\xN, for \mathcal{E}: \mathcal{M}(\bar{\Omega}) \to (-\infty, +\infty], \ \mathcal{E}(\mu):= \begin{cases} \int_\Omega{[F(u(x))+V(x)u(x)]\xdif x} &\text{ if } \mu=u\mathscr{L}^d, \\ +\infty &\text{ else}, \end{cases} yields weak solutions to the above equation as the discrete time step size $\tau\downarrow 0$. Moreover, a superdifferentiability property of the Hellinger-Kantorovich distance $\HK_{\Lambda, \Sigma}$, which will play an important role in this context, is established in the general setting of a separable Hilbert space.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Kanittha Yimnak ◽  
Anirut Luadsong

The meshless local Pretrov-Galerkin method (MLPG) with the test function in view of the Heaviside step function is introduced to solve the system of coupled nonlinear reaction-diffusion equations in two-dimensional spaces subjected to Dirichlet and Neumann boundary conditions on a square domain. Two-field velocities are approximated by moving Kriging (MK) interpolation method for constructing nodal shape function which holds the Kronecker delta property, thereby enhancing the arrangement nodal shape construction accuracy, while the Crank-Nicolson method is chosen for temporal discretization. The nonlinear terms are treated iteratively within each time step. The developed formulation is verified in two numerical examples with investigating the convergence and the accuracy of numerical results. The numerical experiments revealing the solutions by the developed formulation are stable and more precise.


Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1208 ◽  
Author(s):  
Lili Wu ◽  
Xiufang Feng

A high-order compact (HOC) implicit difference scheme is proposed for solving three-dimensional (3D) unsteady reaction diffusion equations. To discretize the spatial second-order derivatives, the fourth-order compact difference operators are used, and the third- and fourth-order derivative terms, which appear in the truncation error term, are also discretized by the compact difference method. For the temporal discretization, the multistep backward Euler formula is used to obtain the fourth-order accuracy, which matches the spatial accuracy order. To accelerate the traditional relaxation methods, a multigrid method is employed, and the computational efficiency is greatly improved. Numerical experiments are carried out to validate the accuracy and efficiency of the present method.


Sign in / Sign up

Export Citation Format

Share Document