scholarly journals A Minimizing Movement approach to a class of scalar reaction-diffusion equations

Author(s):  
Florentine Catharina Fleißner

The purpose of this paper is to introduce a Minimizing Movement approach to scalar reaction-diffusion equations of the form \partial_t u \ = \ \Lambda\cdot \mathrm{div}[u(\nabla F'(u) + \nabla V)] \ - \ \Sigma\cdot (F'(u) + V) u, \quad \text{ in } (0, +\infty)\times\Omega, with parameters $\Lambda, \Sigma > 0$ and no-flux boundary condition u(\nabla F'(u) + \nabla V)\cdot {\sf n} \ = \ 0, \quad \text{ on } (0, +\infty)\times\partial\Omega, which is built on their gradient-flow-like structure in the space $\mathcal{M}(\bar{\Omega})$ of finite nonnegative Radon measures on $\bar{\Omega}\subset\xR^d$, endowed with the recently introduced Hellinger-Kantorovich distance $\HK_{\Lambda, \Sigma}$. It is proved that, under natural general assumptions on $F: [0, +\infty)\to\xR$ and $V:\bar{\Omega}\to\xR$, the Minimizing Movement scheme \mu_\tau^0:=u_0\mathscr{L}^d \in\mathcal{M}(\bar{\Omega}), \quad \mu_\tau^n \text{ is a minimizer for } \mathcal{E}(\cdot)+\frac{1}{2\tau}\HK_{\Lambda, \Sigma}(\cdot, \mu_\tau^{n-1})^2, \ n\in\xN, for \mathcal{E}: \mathcal{M}(\bar{\Omega}) \to (-\infty, +\infty], \ \mathcal{E}(\mu):= \begin{cases} \int_\Omega{[F(u(x))+V(x)u(x)]\xdif x} &\text{ if } \mu=u\mathscr{L}^d, \\ +\infty &\text{ else}, \end{cases} yields weak solutions to the above equation as the discrete time step size $\tau\downarrow 0$. Moreover, a superdifferentiability property of the Hellinger-Kantorovich distance $\HK_{\Lambda, \Sigma}$, which will play an important role in this context, is established in the general setting of a separable Hilbert space.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Philku Lee ◽  
George V. Popescu ◽  
Seongjai Kim

After a theory of morphogenesis in chemical cells was introduced in the 1950s, much attention had been devoted to the numerical solution of reaction-diffusion (RD) partial differential equations (PDEs). The Crank–Nicolson (CN) method has been a common second-order time-stepping procedure. However, the CN method may introduce spurious oscillations for nonsmooth data unless the time step size is sufficiently small. This article studies a nonoscillatory second-order time-stepping procedure for RD equations, called a variable-θmethod, as a perturbation of the CN method. In each time level, the new method detects points of potential oscillations to implicitly resolve the solution there. The proposed time-stepping procedure is nonoscillatory and of a second-order temporal accuracy. Various examples are given to show effectiveness of the method. The article also performs a sensitivity analysis for the numerical solution of biological pattern forming models to conclude that the numerical solution is much more sensitive to the spatial mesh resolution than the temporal one. As the spatial resolution becomes higher for an improved accuracy, the CN method may produce spurious oscillations, while the proposed method results in stable solutions.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Kanittha Yimnak ◽  
Anirut Luadsong

The meshless local Pretrov-Galerkin method (MLPG) with the test function in view of the Heaviside step function is introduced to solve the system of coupled nonlinear reaction-diffusion equations in two-dimensional spaces subjected to Dirichlet and Neumann boundary conditions on a square domain. Two-field velocities are approximated by moving Kriging (MK) interpolation method for constructing nodal shape function which holds the Kronecker delta property, thereby enhancing the arrangement nodal shape construction accuracy, while the Crank-Nicolson method is chosen for temporal discretization. The nonlinear terms are treated iteratively within each time step. The developed formulation is verified in two numerical examples with investigating the convergence and the accuracy of numerical results. The numerical experiments revealing the solutions by the developed formulation are stable and more precise.


2014 ◽  
Vol 55 ◽  
Author(s):  
Arsenij Kurbanov ◽  
Vytautas Ašeris

The operation of biosensors is described by mathematical models with reaction-diffusion equations. Due to non-linear reaction members, these models are solved using numerical methods, which often are a very time-consuming. The goal is to propose variable time step size algorithm which would reduce required calculations while preserving the accuracy of results. The proposed algorithm was applied to two biosensor models: with different diffusion and reaction. The applications of this algorithm are wide, because it is based on a few basic requirements, which are true for most biosensors models. The recommendations were made for choosing optimal algorithm parameters in general case. Algorithms efficiency was found to be dependent on mathematical models reaction part. Although the algorithm does reduce step count for all analyzed model parameters, the step count decrease ranges from 30% to tens of millions times.


2011 ◽  
Vol 2011 ◽  
pp. 1-25
Author(s):  
Jui-Ling Yu

We present a class of numerical methods for the reaction-diffusion-chemotaxis system which is significant for biological and chemistry pattern formation problems. To solve reaction-diffusion-chemotaxis systems, efficient and reliable numerical algorithms are essential for pattern generations. Along with the implementation of the method of lines, implicit or semi-implicit schemes are typical time stepping solvers to reduce the effect on time step constrains due to the stability condition. However, these two schemes are usually difficult to employ. In this paper, we propose an adaptive optimal time stepping strategy for the explicit -stage Runge-Kutta method to solve reaction-diffusion-chemotaxis systems. Instead of relying on empirical approaches to control the time step size, variable time step sizes are given explicitly. Yet, theorems about stability and convergence of the algorithm are provided in analyzing robustness and efficiency. Numerical experiment results on a testing problem and a real application problem are shown.


2020 ◽  
Vol 18 (1) ◽  
pp. 1552-1564
Author(s):  
Huimin Tian ◽  
Lingling Zhang

Abstract In this paper, the blow-up analyses in nonlocal reaction diffusion equations with time-dependent coefficients are investigated under Neumann boundary conditions. By constructing some suitable auxiliary functions and using differential inequality techniques, we show some sufficient conditions to ensure that the solution u ( x , t ) u(x,t) blows up at a finite time under appropriate measure sense. Furthermore, an upper and a lower bound on blow-up time are derived under some appropriate assumptions. At last, two examples are presented to illustrate the application of our main results.


Sign in / Sign up

Export Citation Format

Share Document