scholarly journals Numerical and dimensional investigation of two-phase countercurrent imbibition in porous media

2013 ◽  
Vol 242 ◽  
pp. 285-296 ◽  
Author(s):  
M.F. El-Amin ◽  
Amgad Salama ◽  
Shuyu Sun
2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
M. F. El-Amin ◽  
Amgad Salama ◽  
Shuyu Sun

We introduce a numerical investigation of the effect of gravity on the problem of two-phase countercurrent imbibition in porous media. We consider three cases of inlet location, namely, from, side, top, and bottom. A 2D rectangular domain is considered for numerical simulation. The results indicate that gravity has a significant effect depending on open-boundary location.


2017 ◽  
Vol 10 (1) ◽  
pp. 13-22
Author(s):  
Renyi Cao ◽  
Junjie Xu ◽  
Xiaoping Yang ◽  
Renkai Jiang ◽  
Changchao Chen

During oilfield development, there exist multi-cycle gas–water mutual displacement processes. This means that a cycling process such as water driving gas–gas driving water–water driving gas is used for the operation of injection and production in a single well (such as foam huff and puff in single well or water-bearing gas storage). In this paper, by using core- and micro-pore scales model, we study the distribution of gas and water and the flow process of gas-water mutual displacement. We find that gas and water are easier to disperse in the porous media and do not flow in continuous gas and water phases. The Jamin effect of the gas or bubble becomes more severe and makes the flow mechanism of multi-cycle gas–water displacement different from the conventional water driving gas or gas driving water processes. Based on experiments of gas–water mutual displacement, the changing mechanism of gas–water displacement is determined. The results indicate that (1) after gas–water mutual displacement, the residual gas saturation of a gas–water coexistence zone becomes larger and the two-phase zone becomes narrower, (2) increasing the number of injection and production cycles causes the relative permeability of gas to increase and relative permeability for water to decrease, (3) it becomes easier for gas to intrude and the invaded water becomes more difficult to drive out and (4) the microcosmic fluid distribution of each stage have a great difference, which caused the two-phase region becomes narrower and effective volume of gas storage becomes narrower.


Author(s):  
Andreas G. Yiotis ◽  
John Psihogios ◽  
Michael E. Kainourgiakis ◽  
Aggelos Papaioannou ◽  
Athanassios K. Stubos

Sign in / Sign up

Export Citation Format

Share Document