First- and second-order unconditionally stable direct discretization methods for multi-component Cahn-Hilliard system on surfaces

Author(s):  
Yibao Li ◽  
Rui Liu ◽  
Qing Xia ◽  
Chenxi He ◽  
Zhong Li
2022 ◽  
Vol 171 ◽  
pp. 58-75
Author(s):  
Danxia Wang ◽  
Xingxing Wang ◽  
Ran Zhang ◽  
Hongen Jia

2013 ◽  
Vol 80 (2) ◽  
Author(s):  
Ali Akbar Gholampour ◽  
Mehdi Ghassemieh ◽  
Mahdi Karimi-Rad

A new time integration scheme is presented for solving the differential equation of motion with nonlinear stiffness. In this new implicit method, it is assumed that the acceleration varies quadratically within each time step. By increasing the order of acceleration, more terms of the Taylor series are used, which are expected to have responses with better accuracy than the classical methods. By considering this assumption and employing two parameters δ and α, a new family of unconditionally stable schemes is obtained. The order of accuracy, numerical dissipation, and numerical dispersion are used to measure the accuracy of the proposed method. Second order accuracy is achieved for all values of δ and α. The proposed method presents less dissipation at the lower modes in comparison with Newmark's average acceleration, Wilson-θ, and generalized-α methods. Moreover, this second order accurate method can control numerical damping in the higher modes. The numerical dispersion of the proposed method is compared with three unconditionally stable methods, namely, Newmark's average acceleration, Wilson-θ, and generalized-α methods. Furthermore, the overshooting effect of the proposed method is compared with these methods. By evaluating the computational time for analysis with similar time step duration, the proposed method is shown to be faster in comparison with the other methods.


Geophysics ◽  
1999 ◽  
Vol 64 (6) ◽  
pp. 1867-1876 ◽  
Author(s):  
Seongjai Kim ◽  
Richard Cook

We consider a second‐order finite difference scheme to solve the eikonal equation. Upwind differences are requisite to sharply resolve discontinuities in the traveltime derivatives, whereas centered differences improve the accuracy of the computed traveltime. A second‐order upwind essentially non‐oscillatory (ENO) scheme satisfies these requirements. It is implemented with a dynamic down ’n’ out (DNO) marching, an expanding box approach. To overcome the instability of such an expanding box scheme, the algorithm incorporates an efficient post sweeping (PS), a correction‐by‐iteration method. Near the source, an efficient and accurate mesh‐refinement initialization scheme is suggested for the DNO marching. The resulting algorithm, ENO-DNO-PS, turns out to be unconditionally stable, of second‐order accuracy, and efficient; for various synthetic and real velocity models having large contrasts, two PS iterations produce traveltimes accurate enough to complete the computation.


2002 ◽  
Vol 31 (558) ◽  
Author(s):  
Ole Østerby

Crank-Nicolson is a popular method for solving parabolic equations because it is unconditionally stable and second order accurate. One drawback of CN is that it responds to jump discontinuities in the initial conditions with oscillations which are weakly damped and therefore may persist for a long time. We present a selection of methods to reduce the amplitude of these oscillations.


Sign in / Sign up

Export Citation Format

Share Document