scholarly journals Numerical simulation of the three-dimensional Rayleigh–Taylor instability

2013 ◽  
Vol 66 (8) ◽  
pp. 1466-1474 ◽  
Author(s):  
Hyun Geun Lee ◽  
Junseok Kim
2016 ◽  
Vol 791 ◽  
pp. 34-60 ◽  
Author(s):  
R. V. Morgan ◽  
O. A. Likhachev ◽  
J. W. Jacobs

Theory and experiments are reported that explore the behaviour of the Rayleigh–Taylor instability initiated with a diffuse interface. Experiments are performed in which an interface between two gases of differing density is made unstable by acceleration generated by a rarefaction wave. Well-controlled, diffuse, two-dimensional and three-dimensional, single-mode perturbations are generated by oscillating the gases either side to side, or vertically for the three-dimensional perturbations. The puncturing of a diaphragm separating a vacuum tank beneath the test section generates a rarefaction wave that travels upwards and accelerates the interface downwards. This rarefaction wave generates a large, but non-constant, acceleration of the order of $1000g_{0}$, where $g_{0}$ is the acceleration due to gravity. Initial interface thicknesses are measured using a Rayleigh scattering diagnostic and the instability is visualized using planar laser-induced Mie scattering. Growth rates agree well with theoretical values, and with the inviscid, dynamic diffusion model of Duff et al. (Phys. Fluids, vol. 5, 1962, pp. 417–425) when diffusion thickness is accounted for, and the acceleration is weighted using inviscid Rayleigh–Taylor theory. The linear stability formulation of Chandrasekhar (Proc. Camb. Phil. Soc., vol. 51, 1955, pp. 162–178) is solved numerically with an error function diffusion profile using the Riccati method. This technique exhibits good agreement with the dynamic diffusion model of Duff et al. for small wavenumbers, but produces larger growth rates for large-wavenumber perturbations. Asymptotic analysis shows a $1/k^{2}$ decay in growth rates as $k\rightarrow \infty$ for large-wavenumber perturbations.


2009 ◽  
Vol 20 (11) ◽  
pp. 1803-1816 ◽  
Author(s):  
DANIELE CHIAPPINI ◽  
GINO BELLA ◽  
SAURO SUCCI ◽  
STEFANO UBERTINI

We present an application of the hybrid finite-difference Lattice-Boltzmann model, recently introduced by Lee and coworkers for the numerical simulation of complex multiphase flows.1–4 Three typical test-case applications are discussed, namely Rayleigh–Taylor instability, liquid droplet break-up and coalescence. The numerical simulations of the Rayleigh–Taylor instability confirm the capability of Lee's method to reproduce literature results obtained with previous Lattice-Boltzmann models for non-ideal fluids. Simulations of two-dimensional droplet breakup reproduce the qualitative regimes observed in three-dimensional simulations, with mild quantitative deviations. Finally, the simulation of droplet coalescence highlights major departures from the three-dimensional picture.


Sign in / Sign up

Export Citation Format

Share Document