Vibrations of single- and double-walled carbon nanotubes with layerwise boundary conditions: A molecular dynamics study

2012 ◽  
Vol 12 (3) ◽  
pp. 707-711 ◽  
Author(s):  
R. Ansari ◽  
S. Ajori ◽  
B. Arash
NANO ◽  
2012 ◽  
Vol 07 (03) ◽  
pp. 1250018 ◽  
Author(s):  
HESSAM ROUHI ◽  
REZA ANSARI

In this paper, a nonlocal Flugge shell model is utilized to investigate the axial buckling behavior of double-walled carbon nanotubes (DWCNTs) under various boundary conditions. According to the nonlocal elasticity theory, the displacement field equations coupled by the van der Waals interaction are derived. The set of governing equations of motion is then solved by the Rayleigh–Ritz method. The present analysis can treat boundary conditions in a layer-wise manner. The effects of nonlocal parameter, layer-wise boundary conditions and geometrical parameters on the mechanical behavior of DWCNTs are examined. Furthermore, molecular dynamics simulations are performed to assess the validity of the results and also to predict the appropriate values of nonlocal parameter. It is found that the type of boundary conditions affects the proper value of nonlocal parameter.


Sign in / Sign up

Export Citation Format

Share Document