Lignin carbon aerogel/nickel binary network for cubic supercapacitor electrodes with ultra-high areal capacitance

Carbon ◽  
2021 ◽  
Vol 174 ◽  
pp. 500-508
Author(s):  
Siqin Guo ◽  
Haichao Li ◽  
Xun Zhang ◽  
Haq Nawaz ◽  
Sheng Chen ◽  
...  
2021 ◽  
Vol 9 (1) ◽  
pp. 423-432
Author(s):  
Shijia Yuan ◽  
Wei Fan ◽  
Dong Wang ◽  
Longsheng Zhang ◽  
Yue-E. Miao ◽  
...  

Carbon aerogel (CA) microlattices exhibits a controllable macrostructure by 3D printing as well as an interconnected porous microstructure from GP gel and presents a desirable areal and volumetric capacitance with high mass loading.


2004 ◽  
Vol 347 (1-3) ◽  
pp. 238-245 ◽  
Author(s):  
Sung-Woo Hwang ◽  
Sang-Hoon Hyun
Keyword(s):  

2021 ◽  
Vol 13 (1) ◽  
pp. 69-76
Author(s):  
Piia Jõul ◽  
Merike Vaher ◽  
Maria Kuhtinskaja

A carbon aerogel-coated SPME fiber is prepared, and the DI-SPME-GC-MS method is developed for the analysis of organophosphorus pesticides from environmental samples.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Weihua Gu ◽  
Jiaqi Sheng ◽  
Qianqian Huang ◽  
Gehuan Wang ◽  
Jiabin Chen ◽  
...  

Highlights The eco-friendly shaddock peel-derived carbon aerogels were prepared by a freeze-drying method. Multiple functions such as thermal insulation, compression resistance and microwave absorption can be integrated into one material-carbon aerogel. Novel computer simulation technology strategy was selected to simulate significant radar cross-sectional reduction values under real far field condition. . Abstract Eco-friendly electromagnetic wave absorbing materials with excellent thermal infrared stealth property, heat-insulating ability and compression resistance are highly attractive in practical applications. Meeting the aforesaid requirements simultaneously is a formidable challenge. Herein, ultra-light carbon aerogels were fabricated via fresh shaddock peel by facile freeze-drying method and calcination process, forming porous network architecture. With the heating platform temperature of 70 °C, the upper surface temperatures of the as-prepared carbon aerogel present a slow upward trend. The color of the sample surface in thermal infrared images is similar to that of the surroundings. With the maximum compressive stress of 2.435 kPa, the carbon aerogels can provide favorable endurance. The shaddock peel-based carbon aerogels possess the minimum reflection loss value (RLmin) of − 29.50 dB in X band. Meanwhile, the effective absorption bandwidth covers 5.80 GHz at a relatively thin thickness of only 1.7 mm. With the detection theta of 0°, the maximum radar cross-sectional (RCS) reduction values of 16.28 dB m2 can be achieved. Theoretical simulations of RCS have aroused extensive interest owing to their ingenious design and time-saving feature. This work paves the way for preparing multi-functional microwave absorbers derived from biomass raw materials under the guidance of RCS simulations.


Author(s):  
Maryam Nojabaee ◽  
Brigitta Sievert ◽  
Marina Schwan ◽  
Jessica Schettler ◽  
Frieder Warth ◽  
...  

In the presented study, a sulfur infiltrated ultra-microporous carbon aerogel as a composite cathode for lithium sulfur batteries is developed and investigated.


Sign in / Sign up

Export Citation Format

Share Document