porous microstructure
Recently Published Documents


TOTAL DOCUMENTS

229
(FIVE YEARS 73)

H-INDEX

17
(FIVE YEARS 6)

Author(s):  
Farnaz Ghorbani ◽  
Behafarid Ghalandari ◽  
Chaozong Liu

Nanospheres have found versatile applications in the biomedical field; however, their possible harmful effects on immune and inflammatory systems are also a crucial concern. Inspired by a pomegranate structure, we demonstrated a novel structure for the nanostructured microspheres to overcome the drawbacks of nanospheres without compromising their merits. In this study, 3D pomegranate-like polydopamine microspheres (PDAMS) were synthesized by self-oxidative polymerization of dopamine hydrochloride. Herein, controlling the pH during polymerization led to synthesizing homogeneous agglomerated nano-sized spheres (400–2000 nm) and finally forming tunable and monodisperse micron-sized particles (21 µm) with uniform spherical shape porous microstructure. PDAMS interaction with the potential targets, Bone morphogenetic protein-2 (BMP2), Decorin, and Matrilin-1, was investigated via molecular calculations. Theoretical energy analysis revealed that PDAMS interaction with BMP2, Decorin, and Matrilin-1 is spontaneous, so that a protein layer formation on the PDAMS surface suggests application in bone and cartilage repair. It was also observed that PDAMS presented in-vitro degradation within 4 weeks. Here, disappearance of the UV-VIS spectrum peak at 280 nm is accompanied by the degradation of catechol groups. Pomegranate-like PDAMS support the biomimetic formation of hydroxyapatite-like layers, making them appropriate candidates for hard tissue applications. Herein, the appearance of peaks in XRD spectrum at 31.37, 39.57, 45.21, and 50.13° attributed to hydroxyapatite-like layers formation. All these results demonstrated that self-oxidative polymerization under a controllable pH can be a green and straightforward technique for preparing the pomegranate-like PDAMS and providing an innovative basis for further pre-clinical and clinical investigations.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4436
Author(s):  
Aulia Chintia Ambarita ◽  
Sri Mulyati ◽  
Nasrul Arahman ◽  
Muhammad Roil Bilad ◽  
Norazanita Shamsuddin ◽  
...  

Polyethersulfone (PES) is the most commonly used polymer for membrane ultrafiltration because of its superior properties. However, it is hydrophobic, as such susceptible to fouling and low permeation rate. This study proposes a novel bio-based additive of dragonbloodin resin (DBR) for improving the properties and performance of PES-based membranes. Four flat sheet membranes were prepared by varying the concentration of DBR (0–3%) in the dope solutions using the phase inversion method. After fabrication, the membranes were thoroughly characterized and were tested for filtration of humic acid solution to investigate the effect of DBR loading. Results showed that the hydrophilicity, porosity, and water uptake increased along with the DBR loadings. The presence of DBR in the dope solution fastened the phase inversion, leading to a more porous microstructure, resulted in membranes with higher number and larger pore sizes. Those properties led to more superior hydraulic performances. The PES membranes loaded with DBR reached a clean water flux of 246.79 L/(m2·h), 25-folds higher than the pristine PES membrane at a loading of 3%. The flux of humic acid solution reached 154.5 ± 6.6 L/(m2·h), 30-folds higher than the pristine PES membrane with a slight decrease in rejection (71% vs. 60%). Moreover, DBR loaded membranes (2% and 3%) showed an almost complete flux recovery ratio over five cleaning cycles, demonstrating their excellent antifouling property. The hydraulic performance could possibly be enhanced by leaching the entrapped DBR to create more voids and pores for water permeation.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7325
Author(s):  
Esteban Astudillo-Ortiz ◽  
Pedro S. Babo ◽  
Rui L. Reis ◽  
Manuela E. Gomes

Dental pulp tissue engineering (TE) endeavors to regenerate dentin/pulp complex by combining a suitable supporting matrix, stem cells, and biochemical stimuli. Such procedures foresee a matrix that can be easily introduced into the root canal system (RCS) and tightly adhere to dentin walls to assure the dentin surface’s proper colonization with progenitor cells capable of restoring the dentin/pulp complex. Herein was investigated an injectable self-setting hyaluronic acid-based (HA) hydrogel system, formed by aldehyde-modified (a-HA) with hydrazide-modified (ADH), enriched with platelet lysate (PL), for endodontic regeneration. The hydrogels’ working (wT) and setting (sT) times, the adhesion to the dentine walls, the hydrogel’s microstructure, and the delivery of human dental pulp cells (DPCs) were studied in vitro. Hydrogels incorporating PL showed a suitable wT and sT and a porous microstructure. The tensile tests showed that the breaking point occurs after 4.3106 ± 1.8677 mm deformation, while in the indentation test after 1.4056 ± 0.3065 mm deformation. Both breaking points occur in the hydrogel extension. The HA/PL hydrogels exhibited supportive properties and promoted cell migration toward dentin surfaces in vitro. Overall, these results support using PL-laden HA injectable hydrogels (HA/PL) as a biomaterial for DPCs encapsulation, thereby displaying great clinical potential towards endodontic regenerative therapies.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1498
Author(s):  
Aidana Boribayeva ◽  
Gulfairuz Iniyatova ◽  
Aruzhan Uringaliyeva ◽  
Boris Golman

The porous compacts of non-spherical particles are frequently used in energy storage devices and other advanced applications. In the present work, the microstructures of compacts of monodisperse cylindrical particles are investigated. The cylindrical particles with various aspect ratios are generated using superquadrics, and the discrete element method was adopted to simulate the compacts formed under gravity deposition of randomly oriented particles. The Voronoi tessellation is then used to quantify the porous microstructure of compacts. With one exception, the median reduced free volume of Voronoi cells increases, and the median local packing density decreases for compacts composed of cylinders with a high aspect ratio, indicating a loose packing of long cylinders due to their mechanical interlocking during compaction. The obtained data are needed for further optimization of compact porous microstructure to improve the transport properties of compacts of non-spherical particles.


Author(s):  
Esteban Astudillo-Ortiz ◽  
Pedro S Babo ◽  
Rui L Reis ◽  
Manuela E Gomes

Dental pulp tissue engineering (TE) quests to regenerate dentin/pulp complex by combining a suitable supporting matrix, stem cells, and biochemical stimuli. Such procedures foresee a matrix that can be easily introduced into the root canal system (RCS) and tightly adhere to dentin walls to assure the dentin surface's proper colonization with progenitor cells capable of restoring the dentin/pulp complex. Herein was investigated an injectable self-setting hyaluronic acid-based (HA) hydrogel system, formed by aldehyde-modified (a-HA) with hydrazide-modified (ADH), enriched with platelet lysate (PL), for endodontic regeneration. The hydrogels' working (wT) and setting (sT) times, the adhesion to the dentine walls, the hydrogel's microstructure, and the delivery of human Dental Pulp Cells (DPCs) were studied in vitro. Hydrogels incorporating PL showed a suitable wT and sT and a porous microstructure. The tensile tests showed that the breaking point occurs after 4.13 mm deformation. While in the indentation test after 1.3 mm deformation. Both breaking points occur in the hydrogel extension. The HA/PL hydrogels exhibited supportive properties and promoted cell migration toward dentin surfaces in vitro. Overall, these results support using PL-laden HA injectable hydrogels (HA/PL) as a biomaterial for DPCs encapsulation, thereby displaying great clinical potential towards endodontic regenerative therapies.


Author(s):  
A.R. Vishnu ◽  
M. Marvi-Mashhadi ◽  
J.C. Nieto-Fuentes ◽  
J.A. Rodríguez-Martínez

NANO ◽  
2021 ◽  
Author(s):  
Yanfei Zhu ◽  
Baichen Wang ◽  
Wei Li ◽  
Yu Gao

In this paper, a new hydrogen peroxide electrochemical sensor based on the synergistic modification of nitrogen-doped porous carbon (NPC) and carbon nanohybrid aerogel (CNA) is proposed. NPC has been successfully synthesized from porous polyacrylonitrile (PAN) precursor by pre-oxidation to obtain adequate pyridinic-N, which contributes to enhance the electrocatalytic activity. Simultaneously, CNA has been also prepared by self-assembly in a hydrothermal environment without any interference followed by vacuum freeze drying. The final products were characterized by diversiform techniques including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRD). The results showed that the NPC with 23.18% pyridinic-N exhibited well-defined and interconnected three-dimensional (3D) porous microstructure and CNA which encapsulates [Formula: see text]-Fe2O3 particles was obtained. The sensor fabricated by NPC and CNA delivered a wide linear range from 60[Formula: see text][Formula: see text]M to 1680[Formula: see text][Formula: see text]M ([Formula: see text]) and 1680[Formula: see text][Formula: see text]M to 3335[Formula: see text][Formula: see text]M ([Formula: see text]) with sensitivities of 3.98[Formula: see text][Formula: see text]A mM[Formula: see text] and 5.56[Formula: see text][Formula: see text]A mM[Formula: see text], respectively. Furthermore, the obtained sensor showed low detection limit (4.478[Formula: see text][Formula: see text]M, [Formula: see text]/[Formula: see text]), good selectivity and repeatability, rapid response and satisfying practicability.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1694
Author(s):  
Hongyu Wei ◽  
Zhongning Guo ◽  
Zhiyu Ma

Porous microstructure is a common surface morphology that is widely used in antifouling, drag reduction, adsorption, and other applications. In this paper, the lattice gas automata (LGA) method was used to simulate the non-uniform electrochemical machining of porous structure at the mesoscopic level. In a cellular space, the metal and the electrolyte were separated into orderly grids, the migration of corrosive particles was determined by an electric field, and the influences of the concentration gradient and corrosion products were considered. It was found that different pore morphologies were formed due to the competition between dissolution and diffusion. When the voltage was low, diffusion was sufficient, and no deposit was formed at the bottom of the pore. The pore grew faster along the depth and attained a cylindrical shape with a large depth-to-diameter ratio. As the voltage increased, the dissolution rates in all directions were the same; therefore, the pore became approximately spherical. When the voltage continued to increase, corrosion products were not discharged in time due to the rapid dissolution rate. Consequently, a sedimentary layer was formed at the bottom of the pore and hindered further dissolution. In turn, a disc-shaped pore with secondary pores was formed. The obtained simulation results were verified by experimental findings. This study revealed the causes of different morphologies of pores, which has certain guiding significance for non-uniform electrochemical machining.


Author(s):  
Chao Chang ◽  
Min Liu ◽  
Lanxin Li ◽  
Guowei Chen ◽  
Lilin Pei ◽  
...  

Abstract Solar-driven interfacial desalination has been emerged as a promising water treatment technology to generate drinkable water out of seawater. The accumulated salt crystals generated from seawater, however, have adverse effects on solar-driven interfacial evaporation. In this work, we prepared a salt-rejecting reduced graphene oxide (rGO) foam by depositing rGO particles on a hydrophilic melamine foam for solar desalination. Benefitting from the intrinsic porous microstructure and hydrophilicity, the rGO-coated melamine foam has sufficient wettability to draw water to the evaporation region, leading to rapid replenishment of water and simultaneously avoiding salt precipitation. Based on the rGO-coated melamine foam, the interfacial evaporation system can achieve a steady-state evaporation efficiency of 89.6% under a solar flux of 1 kW m−2 and has good durability under one sun over 12 h. With the high solar-to-thermal conversion efficiency and excellent long-term stability, this interfacial evaporation system exhibits the potential of commercial seawater desalination. Graphic abstract


2021 ◽  
Author(s):  
Tiago dos Santos ◽  
Juan Carlos Nieto-Fuentes ◽  
navab hosseini ◽  
Jose A. Rodriguez-Martinez

Abstract This paper investigates the steady-state dynamic radial expansion of a pressurized circular cylindrical cavity in an infinite porous medium modeled with the constitutive framework developed by Monchiet et al. (2008), which considers the material to display a periodic porous microstructure with spheroidal voids and matrix described by the orthotropic yield criterion of Hill (1948). For that purpose, we have extended the formulation of dos Santos et al. (2019) to consider oblate and prolate voids, which allows to assess the role of the initial voids shape on the elastoplastic-anisotropic fields that develop near the cavity. The theoretical development follows the cavity expansion formalism of Cohen and Durban (2013) and employs the artificial viscosity approach of Lew et al. (2001) to avoid singularities in the field variables due to the formation of plastic shock waves. The main outcome of this work is a relationship between the critical cavity expansion velocity for which plastic shocks emerge and the initial aspect ratio of the spheroidal voids. The results show that the formation of shocks is delayed for oblate voids, in comparison with spherical and prolate voids. These findings have been substantiated for different anisotropic behaviors and initial void volume fractions.


Sign in / Sign up

Export Citation Format

Share Document