β-Cyclodextrin associated polymeric systems: Rheology, flow behavior in porous media and enhanced heavy oil recovery performance

2015 ◽  
Vol 134 ◽  
pp. 398-405 ◽  
Author(s):  
Bing Wei
2021 ◽  
Author(s):  
Randy Agra Pratama ◽  
Tayfun Babadagli

Abstract Our previous research, honoring interfacial properties, revealed that the wettability state is predominantly caused by phase change—transforming liquid phase to steam phase—with the potential to affect the recovery performance of heavy-oil. Mainly, the system was able to maintain its water-wetness in the liquid (hot-water) phase but attained a completely and irrevocably oil-wet state after the steam injection process. Although a more favorable water-wetness was presented at the hot-water condition, the heavy-oil recovery process was challenging due to the mobility contrast between heavy-oil and water. Correspondingly, we substantiated that the use of thermally stable chemicals, including alkalis, ionic liquids, solvents, and nanofluids, could propitiously restore the irreversible wettability. Phase distribution/residual oil behavior in porous media through micromodel study is essential to validate the effect of wettability on heavy-oil recovery. Two types of heavy-oils (450 cP and 111,600 cP at 25oC) were used in glass bead micromodels at steam temperatures up to 200oC. Initially, the glass bead micromodels were saturated with synthesized formation water and then displaced by heavy-oils. This process was done to exemplify the original fluid saturation in the reservoirs. In investigating the phase change effect on residual oil saturation in porous media, hot-water was injected continuously into the micromodel (3 pore volumes injected or PVI). The process was then followed by steam injection generated by escalating the temperature to steam temperature and maintaining a pressure lower than saturation pressure. Subsequently, the previously selected chemical additives were injected into the micromodel as a tertiary recovery application to further evaluate their performance in improving the wettability, residual oil, and heavy-oil recovery at both hot-water and steam conditions. We observed that phase change—in addition to the capillary forces—was substantial in affecting both the phase distribution/residual oil in the porous media and wettability state. A more oil-wet state was evidenced in the steam case rather than in the liquid (hot-water) case. Despite the conditions, auspicious wettability alteration was achievable with thermally stable surfactants, nanofluids, water-soluble solvent (DME), and switchable-hydrophilicity tertiary amines (SHTA)—improving the capillary number. The residual oil in the porous media yielded after injections could be favorably improved post-chemicals injection; for example, in the case of DME. This favorable improvement was also confirmed by the contact angle and surface tension measurements in the heavy-oil/quartz/steam system. Additionally, more than 80% of the remaining oil was recovered after adding this chemical to steam. Analyses of wettability alteration and phase distribution/residual oil in the porous media through micromodel visualization on thermal applications present valuable perspectives in the phase entrapment mechanism and the performance of heavy-oil recovery. This research also provides evidence and validations for tertiary recovery beneficial to mature fields under steam applications.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1225 ◽  
Author(s):  
Xiankang Xin ◽  
Gaoming Yu ◽  
Zhangxin Chen ◽  
Keliu Wu ◽  
Xiaohu Dong ◽  
...  

The flow of polymer solution and heavy oil in porous media is critical for polymer flooding in heavy oil reservoirs because it significantly determines the polymer enhanced oil recovery (EOR) and polymer flooding efficiency in heavy oil reservoirs. In this paper, physical experiments and numerical simulations were both applied to investigate the flow of partially hydrolyzed polyacrylamide (HPAM) solution and heavy oil, and their effects on polymer flooding in heavy oil reservoirs. First, physical experiments determined the rheology of the polymer solution and heavy oil and their flow in porous media. Then, a new mathematical model was proposed, and an in-house three-dimensional (3D) two-phase polymer flooding simulator was designed considering the non-Newtonian flow. The designed simulator was validated by comparing its results with those obtained from commercial software and typical polymer flooding experiments. The developed simulator was further applied to investigate the non-Newtonian flow in polymer flooding. The experimental results demonstrated that the flow behavior index of the polymer solution is 0.3655, showing a shear thinning; and heavy oil is a type of Bingham fluid that overcomes a threshold pressure gradient (TPG) to flow in porous media. Furthermore, the validation of the designed simulator was confirmed to possess high accuracy and reliability. According to its simulation results, the decreases of 1.66% and 2.49% in oil recovery are caused by the difference between 0.18 and 1 in the polymer solution flow behavior indexes of the pure polymer flooding (PPF) and typical polymer flooding (TPF), respectively. Moreover, for heavy oil, considering a TPG of 20 times greater than its original value, the oil recoveries of PPF and TPF are reduced by 0.01% and 5.77%, respectively. Furthermore, the combined effect of shear thinning and a threshold pressure gradient results in a greater decrease in oil recovery, with 1.74% and 8.35% for PPF and TPF, respectively. Thus, the non-Newtonian flow has a hugely adverse impact on the performance of polymer flooding in heavy oil reservoirs.


Fuel ◽  
2020 ◽  
Vol 282 ◽  
pp. 118808 ◽  
Author(s):  
Sepideh Maaref ◽  
Apostolos Kantzas ◽  
Steven L. Bryant

2018 ◽  
Vol 2 (3) ◽  
pp. 38 ◽  
Author(s):  
Ali Telmadarreie ◽  
Japan Trivedi

Inadequate sweep efficiency is one of the main concerns in conventional heavy oil recovery processes. Alternative processes are therefore needed to increase heavy oil sweep efficiency. Foam injection has gained interest in conventional oil recovery in recent times as it can control the mobility ratio and improve the sweep efficiency over chemical or gas flooding. However, most of the studies have focused on light crude oil. This study aims to investigate the static and dynamic performances of foam and polymer-enhanced foam (PEF) in the presence of heavy oil. Static and dynamic experiments were conducted to investigate the potential of foam and PEF for heavy oil recovery. Static analysis included foam/PEF stability, decay profile, and image analysis. A linear visual sand pack was used to visualize the performance of CO2 foam and CO2 PEF in porous media (dynamic experiments). Nonionic, anionic, and cationic surfactants were used as the foaming agents. Static stability results showed that the anionic surfactant generated relatively more stable foam, even in the presence of heavy oil. Slower liquid drainage and collapse rates for PEF compared to that of foam were the key observations through foam static analyses. Besides improving heavy oil recovery, the addition of polymer accelerated foam generation and propagation in porous media saturated with heavy oil. Visual analysis demonstrated more stable frontal displacement and higher sweep efficiency of PEF compared to conventional foam flooding. Unlike foam injection, lesser channeling (foam collapse) was observed during PEF injection. The results of this study will open a new insight on the potential of foam, especially polymer-enhanced foam, for oil recovery of those reservoirs with viscous oil.


Sign in / Sign up

Export Citation Format

Share Document