scholarly journals Effect of Non-Newtonian Flow on Polymer Flooding in Heavy Oil Reservoirs

Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1225 ◽  
Author(s):  
Xiankang Xin ◽  
Gaoming Yu ◽  
Zhangxin Chen ◽  
Keliu Wu ◽  
Xiaohu Dong ◽  
...  

The flow of polymer solution and heavy oil in porous media is critical for polymer flooding in heavy oil reservoirs because it significantly determines the polymer enhanced oil recovery (EOR) and polymer flooding efficiency in heavy oil reservoirs. In this paper, physical experiments and numerical simulations were both applied to investigate the flow of partially hydrolyzed polyacrylamide (HPAM) solution and heavy oil, and their effects on polymer flooding in heavy oil reservoirs. First, physical experiments determined the rheology of the polymer solution and heavy oil and their flow in porous media. Then, a new mathematical model was proposed, and an in-house three-dimensional (3D) two-phase polymer flooding simulator was designed considering the non-Newtonian flow. The designed simulator was validated by comparing its results with those obtained from commercial software and typical polymer flooding experiments. The developed simulator was further applied to investigate the non-Newtonian flow in polymer flooding. The experimental results demonstrated that the flow behavior index of the polymer solution is 0.3655, showing a shear thinning; and heavy oil is a type of Bingham fluid that overcomes a threshold pressure gradient (TPG) to flow in porous media. Furthermore, the validation of the designed simulator was confirmed to possess high accuracy and reliability. According to its simulation results, the decreases of 1.66% and 2.49% in oil recovery are caused by the difference between 0.18 and 1 in the polymer solution flow behavior indexes of the pure polymer flooding (PPF) and typical polymer flooding (TPF), respectively. Moreover, for heavy oil, considering a TPG of 20 times greater than its original value, the oil recoveries of PPF and TPF are reduced by 0.01% and 5.77%, respectively. Furthermore, the combined effect of shear thinning and a threshold pressure gradient results in a greater decrease in oil recovery, with 1.74% and 8.35% for PPF and TPF, respectively. Thus, the non-Newtonian flow has a hugely adverse impact on the performance of polymer flooding in heavy oil reservoirs.

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2636
Author(s):  
Xiankang Xin ◽  
Gaoming Yu ◽  
Keliu Wu ◽  
Xiaohu Dong ◽  
Zhangxin Chen

Polymer flooding (PF) in heterogeneous heavy oil reservoirs is not only closely related to polymer degradation, but also to non-Newtonian flow. In this paper, both experimental and simulation methods are combined to investigate this type of flooding. Through experiments, the degradation of polymer, rheological properties of fluids, and flow of fluids in porous media were determined. Based on the experimental results, a novel mathematical model was established, and a new PF simulator was designed, validated, and further applied to study the effects of polymer degradation, polymer solution shear thinning, and non-Newtonian flow on PF in heterogeneous heavy oil reservoirs. These experimental results demonstrated that the polymer first-order static degradation rate constant was lower than the polymer first-order dynamic degradation rate constant; the polymer solution and heavy oil were non-Newtonian fluids, with shear thinning and Bingham fluid properties, respectively; and the heavy oil threshold pressure gradient (TPG) in low-permeability porous media was higher than that in high-permeability porous media. All comparison results showed that the designed simulator was highly accurate and reliable, and could well describe both polymer degradation and non-Newtonian flow, with special emphasis on the distinction between polymer static and dynamic degradation and heavy oil TPG. Furthermore, the simulation results verified that polymer degradation, polymer solution shear thinning, and heavy oil TPG all had negative effects on the efficiency of PF in heterogeneous heavy oil reservoirs.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhijie Wei ◽  
Xiaodong Kang ◽  
Yuyang Liu ◽  
Hanxu Yang

Injection conformance reversion commonly observed during polymer flooding in offshore heterogeneous heavy-oil reservoirs weakens the volumetric sweep of polymer solution and compromises its EOR results. To investigate its mechanisms and impact factors, one mathematical model to predicate injection conformance behavior is constructed for heterogeneous reservoirs based on the Buckley-Leverett function. The different suction capability of each layer to polymer solution results in distinct change law of the flow resistance force, which in turn reacts upon the suction capability and creates dynamic redistribution of injection between layers. Conformance reversion takes place when the variation ratio of flow resistance force of different layers tends to be the same. The peak value and scope of conformance reversion decrease and reversion timing is advanced as oil viscosity or permeability contrast increases, or polymer concentration or relative thickness of low permeable layer decreases, which compromises the ability of polymer flooding to improve the volumetric sweep and lower suction of the low permeable layer. The features of offshore polymer flooding tend to make the injection conformance V-type and create low-efficiency circulation of polymer in a high permeable layer more easily. These results can provide guidance to improve the production performance of polymer flooding in offshore heterogeneous heavy-oil reservoirs.


2020 ◽  
Vol 21 (2) ◽  
pp. 339
Author(s):  
I. Carneiro ◽  
M. Borges ◽  
S. Malta

In this work,we present three-dimensional numerical simulations of water-oil flow in porous media in order to analyze the influence of the heterogeneities in the porosity and permeability fields and, mainly, their relationships upon the phenomenon known in the literature as viscous fingering. For this, typical scenarios of heterogeneous reservoirs submitted to water injection (secondary recovery method) are considered. The results show that the porosity heterogeneities have a markable influence in the flow behavior when the permeability is closely related with porosity, for example, by the Kozeny-Carman (KC) relation.This kind of positive relation leads to a larger oil recovery, as the areas of high permeability(higher flow velocities) are associated with areas of high porosity (higher volume of pores), causing a delay in the breakthrough time. On the other hand, when both fields (porosity and permeability) are heterogeneous but independent of each other the influence of the porosity heterogeneities is smaller and may be negligible.


2021 ◽  
Author(s):  
Jasmine Shivani Medina ◽  
Iomi Dhanielle Medina ◽  
Gao Zhang

Abstract The phenomenon of higher than expected production rates and recovery factors in heavy oil reservoirs captured the term "foamy oil," by researchers. This is mainly due to the bubble filled chocolate mousse appearance found at wellheads where this phenomenon occurs. Foamy oil flow is barely understood up to this day. Understanding why this unusual occurrence exists can aid in the transfer of principles to low recovery heavy oil reservoirs globally. This study focused mainly on how varying the viscosity and temperature via pressure depletion lab tests affected the performance of foamy oil production. Six different lab-scaled experiments were conducted, four with varying temperatures and two with varying viscosities. All experiments were conducted using lab-scaled sand pack pressure depletion tests with the same initial gas oil ratio (GOR). The first series of experiments with varying temperatures showed that the oil recovery was inversely proportional to elevated temperatures, however there was a directly proportional relationship between gas recovery and elevation in temperature. A unique observation was also made, during late-stage production, foamy oil recovery reappeared with temperatures in the 45-55°C range. With respect to the viscosities, a non-linear relationship existed, however there was an optimal region in which the live-oil viscosity and foamy oil production seem to be harmonious.


Sign in / Sign up

Export Citation Format

Share Document