The Relationship between the Pulse Pressure/Stroke Volume Index and Abnormal Left Ventricular Geometry

2006 ◽  
Vol 12 (6) ◽  
pp. S26
Author(s):  
David Y. Manela ◽  
Jason C. Levine ◽  
Ather Anis ◽  
Marc Klapholz
1999 ◽  
Vol 84 (7) ◽  
pp. 2308-2313 ◽  
Author(s):  
George J. Kahaly ◽  
Stephan Wagner ◽  
Jana Nieswandt ◽  
Susanne Mohr-Kahaly ◽  
Thomas J. Ryan

Exertion symptoms occur frequently in subjects with hyperthyroidism. Using stress echocardiography, exercise capacity and global left ventricular function can be assessed noninvasively. To evaluate stress-induced changes in cardiovascular function, 42 patients with untreated thyrotoxicosis were examined using exercise echocardiography. Studies were performed during hyperthyroidism, after treatment with propranolol, and after restoration of euthyroidism. Twenty- two healthy subjects served as controls. Ergometry was performed with patients in a semisupine position using a continuous ramp protocol starting at 20 watts/min. In contrast to control and euthyroidism, the change in end-systolic volume index from rest to maximal exercise was lower in hyperthyroidism. At rest, the stroke volume index, ejection fraction, and cardiac index were significantly increased in hyperthyroidism, but exhibited a blunted response to exercise, which normalized after restoration of euthyroidism. Propranolol treatment also led to a significant increase of delta (Δ) stroke volume index. Maximal work load and Δ heart rate were markedly lower in hyper- vs. euthyroidism. Compared to the control value, systemic vascular resistance was lowered by 36% in hyperthyroidism at rest, but no further decline was noted at maximal exercise. The Δ stroke volume index, Δ ejection fraction, Δ heart rate, and maximal work load were significantly reduced in severe hyperthyroidism. Negative correlations between free T3 and diastolic blood pressure, maximal work load, Δ heart rate, and Δ ejection fraction were noted. Thus, in hyperthyroidism, stress echocardiography revealed impaired chronotropic, contractile, and vasodilatatory cardiovascular reserves, which were reversible when euthyroidism was restored.


2020 ◽  
Vol 21 (Supplement_1) ◽  
Author(s):  
P Barbier ◽  
O A Annoh ◽  
G Liu ◽  
M Scorsin ◽  
S Moriggia ◽  
...  

Abstract Background Regional left ventricular dysfunction in patients with mitral valve prolapse (MVP) and normal ejection fraction has been described by different Authors, and recent data point to a dysfunction (prevalently longitudinal strain) of the myocardium of the LV base secondary to dilatation of the mitral annulus. Purpose To investigate degree and extent of regional LV dysfunction and its mechanisms in patients with MVP, severe regurgitation and normal global systolic function, compared to patients with equivalent degree of regurgitation but functional etiology (FMR). Methods Speckle-tracking echocardiography was performed in 30 controls (N), and in severe primary (MVP, n= 50) or functional (FMR, n= 20) mitral regurgitation, to measure global, regional and segmental longitudinal peak systolic strain (LPSS, %), and time delay of peak maximum strain (TTPd, ms, calculated as time to peak maximum strain - time of aortic valve closure). Maximum and minimum mitral annulus diameters and area were measured with 3D echo. We also evaluated as recommended: LV end-diastolic volume index (EDVi, ml/m2), ejection fraction (EF, %), and left atrial end-systolic volume index (LAESVi, ml/m2) with 2D echo; LV stroke volume index, and non-invasive pulmonary systolic (PSP, mmHg) and diastolic pressures (PDP), mmHg) with Doppler echo. Results Age, heart rate, BSA and systolic blood pressure were similar between groups. Atrial fibrillation was present in 34% of MVP and 71% of FMR patients. LV EF was normal in MVP and reduced in FMR (43 ± 14 % vs N, p<.001). LV EDVi (MVP: 77 ± 20 ml/m2; FMR: 107 ± 35, both p<.001 vs N) and LAESVi (MVP: 91 ± 26 ml/m2; FMR: 80 ± 30, both p<.001 vs N) were similarly increased (volume overload) in MVP and FMR, as were PSP (MVP: 42 ± 23 ml/m2; FMR: 52 ± 25, both p<.001 vs N) and PDP (MVP: 16 ± 6 ml/m2; MVP: 15 ± 5, both p<.001 vs N). In FMR, LPSS was reduced globally (-12.8 ± 3.3, p<.001 vs N and MVP) and similarly at LV base, papillary and apical levels. In contrast, in MVP global (-19.4 ± 3.7%) and apical (-23.4 ± 4.5%) LPSS were normal, whereas LV base (-12.3 ± 5.8%, p=.003 vs N) and papillary (-17.1 ± 4%, p=.024 vs N) LPSS were reduced; further, LPSS reduction was localized to the anterior (-16 ± 4, p=.028 vs N), lateral (-17 ± 5, p=.006 vs N) and posterior (-16 ± 6, p=.007 vs N) segments, and was associated with an increased TTPd in the same segments in MVP but not in FMR patients. At multivariate analysis, degree and localisation of regional myocardial dysfunction in patients with MVP was not related to the prolapsing scallop, dimension of the mitral annulus, degree of volume overload or pulmonary pressures, or stroke volume index. Conclusions In patients with MVP, severe regurgitation and normal EF, there is a specific dysfunction pattern of regional LV longitudinal function which appears to be primary and not dependent on the degree of preload increase, mitral annulus dilatation, or localization of the prolapsing scallop.


2017 ◽  
Vol 127 (3) ◽  
pp. 450-456 ◽  
Author(s):  
Matthieu Biais ◽  
Hugues de Courson ◽  
Romain Lanchon ◽  
Bruno Pereira ◽  
Guillaume Bardonneau ◽  
...  

Abstract Background Mini-fluid challenge of 100 ml colloids is thought to predict the effects of larger amounts of fluid (500 ml) in intensive care units. This study sought to determine whether a low quantity of crystalloid (50 and 100 ml) could predict the effects of 250 ml crystalloid in mechanically ventilated patients in the operating room. Methods A total of 44 mechanically ventilated patients undergoing neurosurgery were included. Volume expansion (250 ml saline 0.9%) was given to maximize cardiac output during surgery. Stroke volume index (monitored using pulse contour analysis) and pulse pressure variations were recorded before and after 50 ml infusion (given for 1 min), after another 50 ml infusion (given for 1 min), and finally after 150 ml infusion (total = 250 ml). Changes in stroke volume index induced by 50, 100, and 250 ml were recorded. Positive fluid challenges were defined as an increase in stroke volume index of 10% or more from baseline after 250 ml. Results A total of 88 fluid challenges were performed (32% of positive fluid challenges). Changes in stroke volume index induced by 100 ml greater than 6% (gray zone between 4 and 7%, including 19% of patients) predicted fluid responsiveness with a sensitivity of 93% (95% CI, 77 to 99%) and a specificity of 85% (95% CI, 73 to 93%). The area under the receiver operating curve of changes in stroke volume index induced by 100 ml was 0.95 (95% CI, 0.90 to 0.99) and was higher than those of changes in stroke volume index induced by 50 ml (0.83 [95% CI, 0.75 to 0.92]; P = 0.01) and pulse pressure variations (0.65 [95% CI, 0.53 to 0.78]; P < 0.005). Conclusions Changes in stroke volume index induced by rapid infusion of 100 ml crystalloid predicted the effects of 250 ml crystalloid in patients ventilated mechanically in the operating room.


1994 ◽  
Vol 19 (1) ◽  
pp. 49-59 ◽  
Author(s):  
Yagesh Bhambhani ◽  
Stephen Norris ◽  
Gordon Bell

This study examined the relationship of oxygen pulse (O2 pulse) to stroke volume (SV) and arterio-venous oxygen difference [[Formula: see text] diff] during submaximal cycle exercise in untrained (UG) and trained (TG) males. Fourteen volunteers in each group completed an incremental [Formula: see text] max test and a submaximal test at 60% [Formula: see text] max to determine cardiac output (Q) via CO2 rebreathing. [Formula: see text], Q, and heart rate (HR) were used to calculate SV and [Formula: see text] diff. There were no significant differences (p >.05) between the two groups for O2 pulse, SV, and [Formula: see text] diff during submaximal exercise. Stroke volume index (SVI) was significantly higher (p <.05) in the TG. O2 pulse was significantly related to SV and SVI (p <.05) but not to [Formula: see text] diff in both groups. Regression equations for predicting SV from O2 pulse for UG and TG were Y = 6.81X + 26.7, SE = 21.4, r = 0.84, and Y = 10.33X - 32.3, SE = 14.2, r = 0.71, respectively. These results suggest that O2 pulse can be used to predict SV during submaximal cycle exercise in untrained and trained men. Key words: cardiac performance, exercise, training status


Sign in / Sign up

Export Citation Format

Share Document