Radiation Dose Reduction with a Low-Tube Voltage Technique for Pediatric Chest Computed Tomographic Angiography Based on the Contrast-to-Noise Ratio Index

2018 ◽  
Vol 69 (4) ◽  
pp. 390-396
Author(s):  
Takanori Masuda ◽  
Yoshinori Funama ◽  
Takeshi Nakaura ◽  
Masahiro Tahara ◽  
Yukari Yamashita ◽  
...  

Introduction The aim of this study was to evaluate the radiation dose and image quality at low tube-voltage pediatric chest computed tomographic angiography (CTA) that applies the same contrast-to-noise ratio (CNR) index as the standard tube voltage technique. Materials and Methods Contrast-enhanced chest CTA scans of 100 infants were acquired on a 64-row multidetector computed tomography (MDCT) scanner. In the retrospective study, we evaluated 50 images acquired at 120 kVp; the image noise level was set at 25 Hounsfield units. In the prospective study, we used an 80-kVp protocol; the image noise level was 40 Hounsfield units because the iodine contrast was 1.6 times higher than on 120-kVp scans; the CNR was as in the 120-kVp protocol. We compared the CT number, image noise, CT dose index volume (CTDIvol), and the dose-length product on scans acquired with the 2 protocols. A diagnostic radiologist and a pediatric cardiologist visually evaluated all CTA images. Results The mean CTDIvol and the mean dose-length product were 0.5 mGy and 7.8 mGy-cm for 80- and 1.2 mGy and 20.8 mGy-cm for 120-kVp scans, respectively ( P < .001). The mean CTDIvol was 42% lower at 80 kVp than at 120 kVp, and there was no significant difference in the visual scores assigned to the CTA images ( P = .28). Conclusions With the CNR index being the same at 80-kVp and 120-kVp imaging, the radiation dose delivered to infants subjected to chest CTA can be reduced without degradation of the image quality.

2017 ◽  
Vol 8 (2) ◽  
pp. 196-202 ◽  
Author(s):  
Kirsten Rose-Felker ◽  
Joshua D. Robinson ◽  
Carl L. Backer ◽  
Cynthia K. Rigsby ◽  
Osama M. Eltayeb ◽  
...  

Background: Computed tomographic angiography (CTA) and echocardiography (echo) are used preoperatively in coarctation of the aorta to define arch hypoplasia and great vessel branching. We sought to determine differences in quantitative measurements, as well as surgical utility, between modalities. Methods: Infants (less than six months) with both CTA and echo prior to coarctation repair from 2004 to 2013 were included. Measurements were compared and correlated with surgical approach. Three surgeons reviewed de-identified images to predict approach and characterize utility. Computed tomographic angiography radiation dose was calculated. Results: Thirty-three patients were included. No differences existed in arch measurements between echo and CTA ( z-score: −2.59 vs −2.43; P = .47). No differences between modalities were seen for thoracotomy ( z-score: −2.48 [echo] vs −2.31 [CTA]; P = .48) or sternotomy ( z-score: −3.13 [echo] vs −3.08 [CTA]; P = .84). Computed tomographic angiography delineated great vessel branching pattern in two patients with equivocal echo findings ( P = .60). Surgeons rated CTA as far more useful than echo in understanding arch hypoplasia and great vessel branching in cases where CTA was done to resolve anatomical questions that remain after echo evaluation. Two of three surgeons were more likely to choose the surgical approach taken based on CTA (surgeon A, P = .02; surgeon B, P = .01). Radiation dose averaged 2.5 (1.6) mSv and trended down from 2.9 mSv (1.8 mSv; n = 20) to 1.6 mSv (0.5 mSv; n = 7) ( P = .06) with new technology. Conclusion: Although CTA and echo measurements of the aorta do not differ, CTA better delineates branching and surgeons strongly prefer it for three-dimensional arch anatomy. We recommend CTA for patients with anomalous arch branching patterns, diffuse or complex hypoplasia, or unusual arch morphology not fully elucidated by echo.


Sign in / Sign up

Export Citation Format

Share Document