scholarly journals Utilization of Ethyl Cellulose in the Osmotically-Driven and Anisotropically-Actuated 4D Printing Concept of Edible Food Composites

Author(s):  
Ezgi Pulatsu ◽  
Jheng-Wun Su ◽  
Jian Lin ◽  
Mengshi Lin
Keyword(s):  
Author(s):  
Khodadad Mostakim ◽  
Nahid Imtiaz Masuk ◽  
Md. Rakib Hasan ◽  
Md. Shafikul Islam

The advancement in 3D printing has led to the rapid growth of 4D printing technology. Adding time, as the fourth dimension, this technology ushered the potential of a massive evolution in fields of biomedical technologies, space applications, deployable structures, manufacturing industries, and so forth. This technology performs ingenious design, using smart materials to create advanced forms of the 3-D printed specimen. Improvements in Computer-aided design, additive manufacturing process, and material science engineering have ultimately favored the growth of 4-D printing innovation and revealed an effective method to gather complex 3-D structures. Contrast to all these developments, novel material is still a challenging sector. However, this short review illustrates the basic of 4D printing, summarizes the stimuli responsive materials properties, which have prominent role in the field of 4D technology. In addition, the practical applications are depicted and the potential prospect of this technology is put forward.


2013 ◽  
Vol 32 (5) ◽  
pp. 532-535
Author(s):  
Xin-xia WANG ◽  
Ya-ling LIN ◽  
Guo-qing ZHANG ◽  
Gui-chen ZHOU ◽  
Ying LU ◽  
...  

Author(s):  
R. Nagaraju ◽  
Rajesh Kaza

Salbutamol and theophylline are available in conventional dosage forms, administered four times a day, leading to saw tooth kinetics and resulting in ineffective therapy. The combination of these two drugs in a single dosage form will enhance the patient compliance and prolong bronchodilation. Various polymers, such as hydroxy propyl methylcellulose K4M (HPMC- K4M), hydroxy propyl methylcellulose K100M (HPMC- K100M), xanthan gum, ethyl cellulose and hydroxy propyl methylcellulose phthalate (HPMC-P) were studied. HPMC-P and HPMC- K4M were found to be best in controlling the release. In-vitro dissolution studies were carried out for all the bi-layered tablets developed using USP dissolution apparatus type 2 (paddle). It was found that the tablet FB15-FW3 showed 50% release of salbutamol in first hour and the remaining was released for eight hours. However, theophylline was found to be released as per the USP specifications. The IR spectrum was taken for FB15-FW3 formulation and it revealed that there is no disturbance in the principal peaks of pure drugs salbutamol and theophylline. This further confirms the integrity of pure drugs and no incompatibility of them with excipients. Also, formulation of FB15-FW3 has shown required release pattern and complies with all the evaluated parameters and comparable to the marketed formulation.


2020 ◽  
Vol 10 ◽  
Author(s):  
Rupali Singh ◽  
Rishabha Malviya

Background: The chronotherapy concept attains considerable focus towards itself due to its pulsatile fashion rather than continuous delivery. The delivery of the right amount of drug to the target organ at the most appropriate time is fulfilled by using the chronotherapeutic dosage form. Aim: The present study aims to develop and evaluate a chronotherapeutic drug delivery system by using natural polymer for time specific drug delivery at the target site. Material and Method: Tamarind seed polysaccharide was extracted and used in the preparation of core tablets. Nine formulations of core tablets were prepared with nifedipine at 5 tonnes of pressure on 6 mm punch. The core tablets were prepared by using the compression coating method. The three batches F1, F2 and F3 were prepared by using tamarind gum in different concentration i.e. 45%, 22.5% and 67.5% respectively and compressed at 8 tonnes of pressure on 12 mm of punch. The finally compressed tablet was coated with different concentrations of ethyl cellulose in which isopropyl alcohol used as a solvent. In a controlled medium, a stability study was performed to evaluate the physical appearance, drug content and release of the prepared core tablet. Result: All the nine formulations of tablets were prepared successfully and the evaluation studies (thickness, weight variation, hardness, friability etc.) revealed that all the formulations were within the official range. The release study of the drug revealed that the formulation F7 containing 67.5% of tamarind polymer, coated with 2%, 4% and 5% of ethyl cellulose solution released 59.68±1.03% (Q50%) drug within 5 h whereas, 87.09±2.08% (Q80%) within 6 h and within 12 h 97.74±2.19% of the drug was released. The formulation F7 was found to be more effective as it released the maximum amount of drug in a short period as compared with other formulations. Conclusion: The coating of core tablets allowed to prepare pharmaceutical dosage form for time specific drug delivery. These chronotherapeutic core tablets can be used for the treatment of angina pectoris and hypertension etc.


Biocatalysis ◽  
1992 ◽  
Vol 6 (4) ◽  
pp. 291-305 ◽  
Author(s):  
Marina Otamiri ◽  
Patrick Adlercreutz ◽  
Bo Mattiasson

2021 ◽  
Vol 126 ◽  
pp. 103374
Author(s):  
Saoussen Dimassi ◽  
Frédéric Demoly ◽  
Christophe Cruz ◽  
H. Jerry Qi ◽  
Kyoung-Yun Kim ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document