dissolution apparatus
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 17)

H-INDEX

21
(FIVE YEARS 1)

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2168
Author(s):  
Timothy A. G. Langrish ◽  
Chao Zhong ◽  
Lizhe Sun

Measurements of external mass-transfer coefficients for dissolution have been made with benzoic acid tablets with a diameter of 13 mm and approximately 3 mm thick, using two different dissolution systems. One system has been a beaker with a platform for the tablet and either 80 mL or 120 mL of water, with three different types of stirrers, and the other has been a USP dissolution apparatus 2 (paddle) with either 200 mL or 900 mL water. Various stirring speeds have also been used in the different pieces of equipment. The same mass-transfer coefficient may potentially be obtained from the same tablet by adjusting the operating conditions in the two different devices. The ranges of the external mass-transfer coefficients measured in both devices overlapped significantly, with the range being 0.193–4.48 × 10−5 m s−1 in the beaker and stirrer system and 0.222–3.45 × 10−5 m s−1 in the USP dissolution apparatus 2. Dimensional analysis of the results, using Sherwood and Reynolds numbers, shows that the Ranz–Marshall correlation provides a lower bound for estimates of the Sherwood numbers measured experimentally. Calculations of time constants for mass transfer suggest that mass transfer may be a rate-limiting step for dissolution and food digestion under some circumstances. The range of mass-transfer coefficients measured here is representative of other measurements from the literature, and the use of the Ranz–Marshall correlation supports the suggestion that this range of values should be generally expected in most situations.


2021 ◽  
Vol 8 ◽  
Author(s):  
Weiting Lyu ◽  
Thamer Omar ◽  
Harna Patel ◽  
David Rodriguez ◽  
Mario G. Ferruzzi ◽  
...  

Methods for a dissolution study by ultra-high performance liquid chromatography/triple quadrupole mass spectrometry (UHPLC-QqQ/MS) analysis of grape polyphenol dietary supplements, namely, grape seed extract (GSE) and resveratrol (RSV) capsules, were developed following the guidance of United States Pharmacopeia (USP) <2040>. Two dissolution media, 0.1 N hydrochloric acid (pH 1.2) and 0.05 M acetate buffer (pH 4.6), were evaluated with dissolution apparatus (USP 1), 100 rpm rotation speed, and 900 ml dissolution medium volume. Dissolution profiling was performed over 120 min. Major phenolic compounds of gallic acid, catechin, epicatechin, and procyanidin B2 were quantitated to obtain the dissolution profile of GSE capsules, and trans-RSV was used for RSV capsules. Results indicated that the released trans-RSV for RSV capsules in both of the dissolution media meets the USP standards, and that for the GSE capsules, all the four marker compounds passed the dissolution test in the HCl medium but did not reach a 75% release within 60 min in the acetate buffer. These promising results suggest that the general USP dissolution protocols are adequate for the successful release of RSV capsules in HCl medium and acetate buffer and GSE capsules (in HCl medium), but may be inadequate for GSE capsules in acetate buffer. These results showed that under a low pH of 1.2 (simulated stomach environment), bioactive compounds were released on time from the GSE capsules and met the USP guidelines; however, under a higher pH of 4.6 (simulated duodenum environment), the same biomarkers failed, suggesting the need to further improve the dissolution of GSE over a wider range of pH environments to enhance bioavailability and efficacy.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1541
Author(s):  
Fabio Sonvico ◽  
Veronica Chierici ◽  
Giada Varacca ◽  
Eride Quarta ◽  
Davide D’Angelo ◽  
...  

To overcome some of the shortfalls of the types of dissolution testing currently used for pulmonary products, a new custom-built dissolution apparatus has been developed. For inhalation products, the main in vitro characterisation required by pharmacopoeias is the deposition of the active pharmaceutical ingredient in an impactor to estimate the dose delivered to the target site, i.e., the lung. Hence, the collection of the respirable dose (<5 µm) also appears to be an essential requirement for the study of the dissolution rate of particles, because it results as being a relevant parameter for the pharmacological action of the powder. In this sense, dissolution studies could become a complementary test to the routine testing of inhaled formulation delivered dose and aerodynamic performance, providing a set of data significant for product quality, efficacy and/or equivalence. In order to achieve the above-mentioned objectives, an innovative dissolution apparatus (RespiCell™) suitable for the dissolution of the respirable fraction of API deposited on the filter of a fast screening impactor (FSI) (but also of the entire formulation if desirable) was designed at the University of Parma and tested. The purpose of the present work was to use the RespiCell dissolution apparatus to compare and discriminate the dissolution behaviour after aerosolisation of various APIs characterised by different physico-chemical properties (hydrophilic/lipophilic) and formulation strategies (excipients, mixing technology).


2021 ◽  
Vol 11 (3) ◽  
pp. 229-236
Author(s):  
Priyanka M. Salve ◽  
Shital V. Sonawane ◽  
Mayuri B. Patil ◽  
Rajendra K. Surawase

Dissolution is an official test. These used by pharmacopeias for evaluating drug release of solid and semisolid dosages forms. The application of the dissolution testing ensures consistent product quality and to predict in vivo drug bioavailability. The dissolution test, in its simplest form, placing the formulation in a dissolution apparatus containing suitable dissolution medium, allowing it to dissolved specified period of time and then using appropriate rational method to determine the amount of drug. Dissolution test are probative and analysis like drug degradation profile, shelf-life studies, stability, physical and mechanical testing of dosage forms. The present review outlines findings on various dissolution apparatus, various methods and their modification. Dissolution testing the of various dosage form like Delayed release dosage form, Immediate release dosage form, Extended-release dosage form, Powders, Chewable tablets, Transdermal delivery system, Buccal tablets, Soft gelatin capsule, Chewing gums, Suppositories, Aerosols and others semisolids. This article goal of the description of the all-official dissolution testing apparatus.


Author(s):  
Baheti Akshay ◽  
Gothoskar Abhijit ◽  
Palkar Kanchan ◽  
Wani Manish ◽  
Polshettiwar Satish ◽  
...  

Oral route of drug delivery is one of the most preferred route of drug administration. People often consume oral solids, especially OTC drugs, at any time before or after breakfast with water or any other available hot or cold beverages. Crocin is one of the popular OTC brands of paracetamol, which is preferred in large number. Patient consumes this OTC tablet with available beverages which may be hot or cold. However, beverages interact with paracetamol, affecting the release of drug. In view of this, work was focused on study of the effect of various beverages such as coffee, tea, milk, carbonated drink and buttermilk on release of paracetamol (Crocin tablet) tablet using USP type II dissolution apparatus.  Dissolution media used was modified phosphate buffer (pH 5.8) which was further added with beverages and was analyzed by UV spectrophotometrically. Dissolution profile revealed the maximum drug release 97.03 ± 1.29% in plain water was while minimum with tea 23.64 ± 2.00%. In conclusion, beverages consumed while administering with paracetamol tablet affects the release of drug and therefore should be cautiously used or avoided with dosage forms.


Author(s):  
SIHAM ABDOUN ◽  
DALIA GABER ◽  
RAGHAD ALWAHABI ◽  
NASHWA ALQUSSIR ◽  
NEHAL ALMUTAIRI ◽  
...  

Objective: Demonstrating therapeutic equivalency regarding the efficacy and safety among originator products and generics is a key step in permitting the marketing of generic products. The study aimed to evaluate the bioequivalence of five different generic brands of Glimepiride tablets under biowaiver conditions. Methods: The quality of the tablet products, including uniformity of weight, friability, and disintegration test, was assessed using the United State Pharmacopeia (USP) general monograph for the tablet dosage form. The content of glimepiride in the tablets was measured using UV spectrophotometer at the wavelength 229 nm. The release of Glimepiride from the tested and originator tablet products was evaluated using the dissolution profiles conducted in HCI buffer pH 1.2, and phosphate buffer pH 6.4 and 7.8 by USP dissolution apparatus II. The bioequivalence of test products was assessed using the similarity and difference factors.  Results:The tested products complied to USP requirements for quality standards; all the products show rapid disintegration, D1 show higher time (Three minutes) while D3 show lower time (28 seconds). The content of test products was (104.68, 93.75, 97.21, 97.03, and 102.10) for D1, D2, D3, D4, and D5 , respectively, compare to 103.70 for OB. Dissolution profiles revealed that the highest similarity to the originator was showed in pH 6.4; f2 ranged (74.5-68.4) for all the tested products and low similarity in pH 7.8; f2 ranged (45.2-64.7). Conclusion: The study showed that the generic products has noticeable similarity with the originator brand and it can be interchangeable.


2020 ◽  
Vol 109 (11) ◽  
pp. 3471-3479
Author(s):  
Yasuhiro Tsume ◽  
Sanjaykumar Patel ◽  
Michael Wang ◽  
Andre Hermans ◽  
Filippos Kesisoglou

2020 ◽  
Vol 859 ◽  
pp. 15-20
Author(s):  
Kanokporn Burapapadh ◽  
Napat Wattanakhejorn ◽  
Panitsupa Sukpipat ◽  
Sirapa Promchuay ◽  
Thicha Phengpinit ◽  
...  

The objective of this study was to investigate the effect of polymers and their content level on the taste-masking efficiency of spray-dried microparticles. Diclofenac sodium (DS) was used as a model drug, owing to its bitter taste. Hydroxypropyl methylcellulose F4M (HPMC F4M) and Eudragit® E PO were involved in the study as a hydrophilic and a pH-responsive polymer, respectively. The taste-masked DS microparticles with the drug:polymer ratios of 1:1, 1:2 and 1:4 were prepared by the spray-drying technique. The collapsed hollow sphere HPMC F4M based-microparticles was observed meanwhile spray-dried Eudragit® E PO based-microparticles were spherical. Loading capacity of both polymer based-microparticles decreased regarding to the increment of drug:polymer ratio. The Eudragit® E PO based-microparticle in the ratio of 1:4 provided the highest loading efficiency as 91.97%. According to the simplified dissolution testing, the taste-masking ability of HPMC F4M and Eudragit® E PO based-microparticles increased upon the increase of drug:polymer ratio. Drug release at the first 5 minutes from dissolution profiles, tested by type II dissolution apparatus, of the Eudragit® E PO based-microparticles was delayed compared to HPMC F4M based-microparticles. Therefore, it could be assumed that Eudragit® E PO was a promising taste-masking polymer for DS with a pleasant taste.


Sign in / Sign up

Export Citation Format

Share Document