Design and Optimization of Chronotherapeutic Dosage Form for the Treatment of Angina Pectoris

2020 ◽  
Vol 10 ◽  
Author(s):  
Rupali Singh ◽  
Rishabha Malviya

Background: The chronotherapy concept attains considerable focus towards itself due to its pulsatile fashion rather than continuous delivery. The delivery of the right amount of drug to the target organ at the most appropriate time is fulfilled by using the chronotherapeutic dosage form. Aim: The present study aims to develop and evaluate a chronotherapeutic drug delivery system by using natural polymer for time specific drug delivery at the target site. Material and Method: Tamarind seed polysaccharide was extracted and used in the preparation of core tablets. Nine formulations of core tablets were prepared with nifedipine at 5 tonnes of pressure on 6 mm punch. The core tablets were prepared by using the compression coating method. The three batches F1, F2 and F3 were prepared by using tamarind gum in different concentration i.e. 45%, 22.5% and 67.5% respectively and compressed at 8 tonnes of pressure on 12 mm of punch. The finally compressed tablet was coated with different concentrations of ethyl cellulose in which isopropyl alcohol used as a solvent. In a controlled medium, a stability study was performed to evaluate the physical appearance, drug content and release of the prepared core tablet. Result: All the nine formulations of tablets were prepared successfully and the evaluation studies (thickness, weight variation, hardness, friability etc.) revealed that all the formulations were within the official range. The release study of the drug revealed that the formulation F7 containing 67.5% of tamarind polymer, coated with 2%, 4% and 5% of ethyl cellulose solution released 59.68±1.03% (Q50%) drug within 5 h whereas, 87.09±2.08% (Q80%) within 6 h and within 12 h 97.74±2.19% of the drug was released. The formulation F7 was found to be more effective as it released the maximum amount of drug in a short period as compared with other formulations. Conclusion: The coating of core tablets allowed to prepare pharmaceutical dosage form for time specific drug delivery. These chronotherapeutic core tablets can be used for the treatment of angina pectoris and hypertension etc.

2018 ◽  
Vol 4 (4) ◽  
pp. 523-531
Author(s):  
Hina Mumtaz ◽  
Muhammad Asim Farooq ◽  
Zainab Batool ◽  
Anam Ahsan ◽  
Ashikujaman Syed

The main purpose of development pharmaceutical dosage form is to find out the in vivo and in vitro behavior of dosage form. This challenge is overcome by implementation of in-vivo and in-vitro correlation. Application of this technique is economical and time saving in dosage form development. It shortens the period of development dosage form as well as improves product quality. IVIVC reduce the experimental study on human because IVIVC involves the in vivo relevant media utilization in vitro specifications. The key goal of IVIVC is to serve as alternate for in vivo bioavailability studies and serve as justification for bio waivers. IVIVC follows the specifications and relevant quality control parameters that lead to improvement in pharmaceutical dosage form development in short period of time. Recently in-vivo in-vitro correlation (IVIVC) has found application to predict the pharmacokinetic behaviour of pharmaceutical preparations. It has emerged as a reliable tool to find the mode of absorption of several dosage forms. It is used to correlate the in-vitro dissolution with in vivo pharmacokinetic profile. IVIVC made use to predict the bioavailability of the drug of particular dosage form. IVIVC is satisfactory for the therapeutic release profile specifications of the formulation. IVIVC model has capability to predict plasma drug concentration from in vitro dissolution media.


2020 ◽  
Vol 16 ◽  
Author(s):  
Cansel Kose Ozkan ◽  
Ozgur Esim ◽  
Ayhan Savaser ◽  
Yalcin Ozkan

: The content and the application of pharmaceutical dosage forms must meet several basic requirements to ensure and maintain efficiency, safety and quality. A large number of active substances have limited ability to direct administration. Excipients are generally used to overcome the limitation of direct administration of these active substances. However, the function, behavior and composition of the excipients need to be well known in the design, development and production of pharmaceutical dosage forms. In this review, excipients used to assist in any pharmaceutical dosage form production processes of drugs, to preserve, promote or increase stability, bioavailability and patient compliance, to assist in product identification / separation, or to enhance overall safety and effectiveness of the drug delivery system during storage or use are explained. Moreover, the use of these excipients in drug delivery systems are identified. Excipient toxicity, which is an issue discussed in the light of current studies, also discussed in this review.


Author(s):  
RIZKA KHOIRUNNISA GUNTINA ◽  
IYAN SOPYAN ◽  
ADE ZUHROTUN

A drug delivery system is a system in which a drug is released from a pharmaceutical dosage form to achieve the desired pharmacological effect. The system consists of conventional and new drug delivery systems. In the new drug delivery system, polymers are used as a matrix. The aim of this article is to find out and understand the formulation and evaluation of natural ingredients that have anticancer activity with different dosage forms and the basis for developing these dosages. Journal searches in this review came from primary data sources on the internet. Journal searches were carried out using a search engine such as Google Scholar, PubMed, and ScienceDirect. In recent years, natural products, such as extract, fraction, and isolate, are getting attention to help treat cancer. Because of their low solubility and bioavailability, the effectiveness tends to be lower than synthetic drugs. Therefore, a dosage form with a new drug delivery system was made to overcome the problem. The dosage forms commonly made are patch, suspension, powder, and emulsion with a new drug delivery system. To ensure the product that has been made met the requirements, they need to be evaluated with various methods like In vitro Study, morphology study, particle size study, and others. Cancer treatment using the natural product can be delivered through several dosage forms like patch, suspension, powder, and emulsion, with specific formulation and manufacturing methods based on several considerations such as natural ingredients properties, dosage form selection, excipient properties, and the purpose of the formulation. Dosage forms that has been made are then evaluated using several evaluation methods.


INDIAN DRUGS ◽  
2018 ◽  
Vol 55 (03) ◽  
pp. 62-64
Author(s):  
G Chandra Sekhara Rao ◽  
◽  
O. S Aathira ◽  
T. Jyothsna

Fast dissolving tablets are considered as one of the rapidly moving products of novel drug delivery systems in the present pharmaceutical market. The development of new excipients for this technology is challenging task for pharmaceutical technologists. Disintegrants are one of the most important ingredients in the formulation of tablet dosage form. The aim of the present work was to test peanut husk powder, a natural material, as a disintegrant in the formulation of fast dissolving tablets of ondansetron hydrochloride. Tablet evaluation tests like hardness, friability, weight variation, disintegration and dissolution were performed for the prepared tablets. The obtained results were tabulated and they were found to be within the acceptable limits. Among all the formulations, formulation F6 containing peanut husk powder has shown the best disintegration property and based on the results it was found to be a superdisintegrant


1970 ◽  
Vol 4 (1) ◽  
pp. 91-95 ◽  
Author(s):  
Amit Alexander ◽  
M Ajazuddin ◽  
M Swarna ◽  
Mukesh Sharma ◽  
DK Tripathi

Mucoadhesive polymers have recently gained interest among pharmaceutical scientists as a means of improving drug delivery by promoting dosage form residence time and contact time with the mucous membranes. Mucoadhesion occurs between two surfaces, one of which is a mucous membrane and another is drug delivery system. Pharmaceutical aspects of mucoadhesion have been the subject of great interest during recent years because mucoadhesion could be a solution for bioavailability problems that result from a too short length of stay of the pharmaceutical dosage form at the absorption site within the gastro-intestinal tract. It has been a great challenge to the pharmaceutical sciences in order to enhance localised drug delivery or to deliver ‘difficult’ molecules (proteins and oligonucleotides) into the systemic circulation. Mucoadhesive systems remain in close contact with the absorption tissue, the mucous membrane, releasing the drug at the site of action leading to increase in bioavailability (both local and systemic effects). Extending the residence time of a dosage form at a particular site and controlling the release of drug from the dosage form are useful especially for achieving controlled plasma level of the drug as well as improving bioavailability. The present review describes mucoadhesion, mucoadhesive polymers and use of these polymers in designing different types of mucoadhesive drug delivery systems.   Key words: Mucoadhesion; Mucoadhesive polymers; Mucoadhesive force; Bioadhesive property. DOI: http://dx.doi.org/10.3329/sjps.v4i1.8878 SJPS 2011; 4(1): 91-95


2015 ◽  
Vol 14 (9) ◽  
pp. 1541-1547
Author(s):  
T Dang ◽  
Y Cui ◽  
Y Chen ◽  
X Meng ◽  
B Tang ◽  
...  

Purpose: To prepare and evaluate colon specific drug delivery system of diclofenac sodium for highly localized delivery to the colon.Methods: The colon specific drug delivery system was prepared as matrix-type microspheres using Ethyl Cellulose (EC), Cellulose Acetate Phthalate (CAP), and Eudragit L 100-55 by the Solvent Evaporation Method. Microspheres were evaluated for physical properties like drug content, particle size, bulk density and angle of repose.Results: The size range of the microcapsules was 228 to 608 μm while drug content was between 74.49 and 91.50 % depending on the polymer used and the  polymer ratio. Mean bulk density was < 1.2 g/ml which indicates the good flow properties, while angle of repose was < 40 o, indicating free-flowing properties. The microspheres were spherical in shape with smooth and nonporous surface, except that the microspheres containing EC and CAP exhibited a rough and porous  surface. The microspheres containing Eudragit L 100-55 in combination with other polymers gave better sustained release (78.9 and 76.6 % at the end of 8 h for  formulation F4 and F5, respectively) than the others.Conclusion: Microspheres prepared with drug: EC: CAP ratio of 1:2:1 show the highest drug content, possess good flow properties and surface morphology, as well as promising drug release for colon specific drug delivery of diclofenac sodium for possible treatment of colorectal cancer.Keywords: Diclofenac, Colorectal cancer, Microspheres, Ethyl cellulose, Cellulose acetate phthalate, Eudragit L 100-55


2019 ◽  
Vol 9 (1) ◽  
pp. 183-189 ◽  
Author(s):  
Sonal Sahu ◽  
Rohit Dangi ◽  
Rohit Patidar ◽  
, Rukhsaar ◽  
Jagdish Rathi ◽  
...  

Oral route is one of the most popular routes of drug delivery due to its ease of administration, patient compliance, least sterility constraints and flexible design of dosage form. The aim of present investigation was to develop matrix tablets of atenolol using different polymers. Atenolol matrix tablets were prepared by direct compression and wet granulation method using different polymers. All the formulations were evaluated for weight variation, thickness, hardness, friability and dissolution. Tablets of atenolol were prepared utilizing natural polymer chitosan. The formulation F-2 contained chitosan which might have sustained the release since it is also known for its polymeric sustaining effect. The formulation F-2 gave 89.57±0.24% of the drug release in 12 hrs of study. Keywords: Atenolol, Sustained release Matrix tablets, Direct compression, Wet granulation method.


2020 ◽  
Vol 2 (1) ◽  
pp. 27
Author(s):  
Iyan Sopyan

This assessment of a floating drug for a novel of new drug delivery system (NDDS) is written to elucidate FDDS based on existing literature. The most recent progresses of FDDS include the formulation and physiological variables that could affect gastric retention and formulations are discussed in detail. This review also summarizes method assessments for FDDS pharmaceutical dosage form and its classification. FDDS. FDDS is made to increase the absorption of the drug that is expected to dissolve in the stomach so that the drug enters the intestine in a dissolved state and the fraction of the absorbed drug increases. FDDS approach is the best way to deal with drugs with low solubility in the digestive tract.Keywords : Floating Tablet, Evaluation, Gastric Retentive


Author(s):  
IYAN SOPYAN ◽  
SRIWIDODO ◽  
RETNO WAHYUNINGRUM ◽  
NORISCA ALIZA P.

Floating drugs are an effective way to lift the absorption of the drug in the stomach. Drugs made drugs last longer in the stomach so that the solubility process will occur effectively in the stomach. This review-journal was created by extracting indexed journals with the floating drug as journal keywords of 40 journals. This assessment of a floating drug for a new drug delivery system (NDDS) is established to elucidate the floating drugs delivery system (FDDS) based on existing literature. The most recent progress of FDDS includes the formulation and physiological variables that could affect gastric retention and formulation are dealt with in detail. This review also summarizes some approaches to prepare a floating system, evaluation methods and characterization for FDDS pharmaceutical dosage form and also its classification.


Sign in / Sign up

Export Citation Format

Share Document