scholarly journals Effectiveness of prescribed fire to re-establish sagebrush steppe vegetation and ecohydrologic function on woodland-encroached sagebrush rangelands, Great Basin, USA: Part II: Runoff and sediment transport at the patch scale

CATENA ◽  
2020 ◽  
Vol 185 ◽  
pp. 104301 ◽  
Author(s):  
Sayjro K. Nouwakpo ◽  
C. Jason Williams ◽  
Frederick B. Pierson ◽  
Mark A. Weltz ◽  
Patrick R. Kormos ◽  
...  
CATENA ◽  
2020 ◽  
Vol 185 ◽  
pp. 103477 ◽  
Author(s):  
C.J. Williams ◽  
Frederick B. Pierson ◽  
Sayjro K. Nouwakpo ◽  
Osama Z. Al-Hamdan ◽  
Patrick R. Kormos ◽  
...  

2009 ◽  
Vol 18 (6) ◽  
pp. 665 ◽  
Author(s):  
Erin M. Goergen ◽  
Jeanne C. Chambers

Woodland expansion affects grasslands and shrublands on a global scale. Prescribed fire is a potential restoration tool, but recovery depends on nutrient availability and species responses after burning. Fire often leads to long-term losses in total nitrogen, but presence of native legumes can influence recovery through addition of fixed nitrogen. We examined the effects of prescribed fire in the central Great Basin, Nevada, USA, on density, biomass and nutrient content of a native legume, Lupinus argenteus (Pursh), and the effects of Lupinus presence and prescribed fire on soil inorganic nitrogen and on neighboring plant functional groups. We examined three treatments – 1 year post-burn, 3 years post-burn and unburned control in three replicate blocks. Extractable soil inorganic nitrogen was variable and, despite a tendency towards increased inorganic nitrogen 1 year post-burn, differences among treatments were not significant. Extractable soil inorganic nitrogen was higher in Lupinus presence regardless of time since fire. Lupinus density increased after fire mainly owing to increased seedling numbers 3 years post-burn. Fire did not affect Lupinus tissue N and P concentrations, but cover of perennial grasses and forbs was higher in Lupinus presence. The invasive annual grass Bromus tectorum had low abundance and was unaffected by treatments. Results indicate that Lupinus has the potential to influence succession through modification of the post-fire environment.


2014 ◽  
Vol 23 (1) ◽  
pp. 117 ◽  
Author(s):  
Jonathan D. Bates ◽  
Robert N. Sharp ◽  
Kirk W. Davies

Woodland ecosystems of the world have been changed by land use demands, altered fire regimes, invasive species and climate change. Reduced fire frequency is recognised as a main causative agent for Pinus–Juniperus L. (piñon–juniper) expansion in North American woodlands. Piñon–juniper control measures, including prescribed fire, are increasingly employed to restore sagebrush steppe communities. We compared vegetation recovery following prescribed fire on Phase 2 (mid-succession) and Phase 3 (late-succession) Juniperus occidentalis Hook. (western juniper) woodlands in Oregon. The herbaceous layer on Phase 2 sites was comprised of native perennial and annual vegetation before and after fire. On Phase 3 sites the herbaceous layer shifted from native species to dominance by invasive Bromus tectorum L. (cheatgrass). After fire, shrubs on Phase 2 sites were comprised of sprouting species and Ceanothus velutinus Dougl. (snowbrush). On Phase 3 woodland sites the shrub layer was dominated by C. velutinus. The results suggest that Phase 2 sites have a greater likelihood of recovery to native vegetation after fire and indicate that sites transitioning from Phase 2 to Phase 3 woodlands cross a recovery threshold where there is a greater potential for invasive weeds, rather than native vegetation, to dominate after fire.


2020 ◽  
Author(s):  
M M Crowell ◽  
K T Shoemaker ◽  
M D Matocq

Abstract Sagebrush-steppe ecosystems are one of the most imperiled ecosystems in North America and many of the species that rely on these habitats are of great conservation concern. Pygmy rabbits (Brachylagus idahoensis) are one of these species. They rely on sagebrush year-round for food and cover, and are understudied across their range in the intermountain west due in part to their recalcitrance to standard capture techniques. Identifying an efficient and minimally biased trapping method therefore is a critical first step in learning more about this species. We assessed how trap orientation and weather characteristics influenced trap success for Tomahawk traps placed in and around pygmy rabbit burrows by carrying out trapping surveys at 16 occupied pygmy rabbit sites across the Great Basin from 2016 to 2018. We found that pygmy rabbits had a greater probability of being captured in traps with the open end facing away from burrow entrances. Pygmy rabbits also were more likely to be captured on clear days (0–5% cloud cover) and during periods of cooler temperatures during summer months (June–August). We found no evidence that sex or age ratios differed, or that individuals differed meaningfully, in their preference for certain trap orientations. To increase trap success for pygmy rabbits, we suggest maximizing trapping effort during summer months, at dawn, and maximizing the proportion of Tomahawk traps facing away from burrow entrances. We anticipate that our monitoring protocol will enable more effective research into the ecology and conservation of this cryptic and potentially imperiled species.


2012 ◽  
Vol 22 (5) ◽  
pp. 1562-1577 ◽  
Author(s):  
G. M. Davies ◽  
J. D. Bakker ◽  
E. Dettweiler-Robinson ◽  
P. W. Dunwiddie ◽  
S. A. Hall ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document