Behavioral differences between weathering and pedogenesis in a subtropical humid granitic terrain: Implications for chemical weathering intensity evaluation

CATENA ◽  
2021 ◽  
Vol 203 ◽  
pp. 105368
Author(s):  
Haowei Mei ◽  
Xing Jian ◽  
Wei Zhang ◽  
Hanjing Fu ◽  
Shuo Zhang
2021 ◽  
Vol 16 (2) ◽  
pp. 123-145
Author(s):  
Vincent Laurent Onana ◽  
Estelle Ndome Effoudou ◽  
Sylvia Desirée Noa Tang ◽  
Véronique Kamgang Kabeyene ◽  
Georges Emmanuel Ekodeck

RésuméUn profil d’altération développé sur chloritoschistes de la zone de Bengbis (Sud Cameroun) a été choisi pour quantifier l’intensité de l’altération et comprendre le comportement des terres rares. Les valeurs de l’indice d’altération mafique combinées aux diagrammes ternaires du système Al – Fe – Mg – Ca – Na – K montrent que l’hydrolyse des feldspaths est proportionnelle à celle des minéraux mafiques (pertes en Mg), bien que l’hydrolyse des plagioclases (Ca, Na) soit plus intense que celle des minéraux ferromagnésiens. Les matériaux d’altération étudiés sont localisés dans le domaine de la kaolinitisation, à l’exception des matériaux nodulaires qui sont légèrement latritiss. La modification du comportement du Mg dans le milieu d’altération s’exprime par les faibles valeurs du rapport Ca/Mg. Le potassium et Be sont lessivés dans le sol en association avec Mg. L’ordre de mobilité des éléments dans l’environnement d’altération étudié est : Ca ≈ Na > Fe2+ ≈ Sr > Mg ≈ Co > Mn > Li > Ba > Rb > P > Cd > Ni > Si > Be > K > Sn. Les enrichissements en K, Cs et Be dans les saprolites sont liés à la présence d’illite. L’accumulation en Cs dans le sol est due à la présence de kaolinite. Le système le plus stable dans le milieu d’altération étudié est : Hf – Nb – W – U. Les saprolites, les matériaux nodulaires et les matériaux argileux meubles superficiels sont appauvris en terres rares par rapport à la roche mère. Les terres rares présentent trois types de comportement le long du profil d’altération, comme l’indiquent les valeurs du rapport (La/Yb)N ((La/Yb)N < 1, (La/Yb)N ~ 1 et (La/Yb)N > 1). Les terres rares légères et les terres rares moyennes s’accumulent dans les matériaux d’altération pour des valeurs de pH comprises entre 5,5 et 5,6 et pour celles de Eh variant entre +60 et +70mV. L’ordre de mobilité de ces éléments dans ces matériaux est le suivant : terres rares moyennes > terres rares lourdes terres rares légères. Ce fait est contre-intuitif, car les terres lourdes sont plus mobiles dans les environnemenst supergènes que les terres rares légères. L’adsorption ou la co-précipitation de ces terres rares sur les oxydes de fer peut principalement contrôler la concentration de ces éléments dans le profil d’altération. Les faibles anomalies en Ce dans les matériaux d’altération de la zone de Bengbis, dues au changement de Ce3+ en Ce4+, sont probablement dues à la présence de faibles quantités de rhabdophane. Les matériaux d’altération étudiés présentent un fractionnement en Gd (Gd/Gd* ~0.70 – 0.84) dues à une intense lixiviation. Ce fait a rarement été signalé dans un environnement d’altération latéritique. Il semble qu’une partie de la distribution et de la remobilisation du gadolinium soit contrôlée par des minéraux mafiques dans les matériaux d’altération étudiés. La distribution et la mobilisation des terres rares sont donc contrôlées par (1) l’adsorption ou la coprécipitation dans les minéraux mafiques et Fe, (2) et légèrement par les minéraux contenant des terres rares tels que le rhabdophane, rencontrés dans les matériaux d’altération étudiés. Abstract An in situ weathering profile overlying chlorite schists in southern Cameroon was chosen to quantify chemical weathering intensity and to study the behaviour of rare earth elements (REE). Mafic index alteration values combined with the ternary diagrams of the Al – Fe – Mg – Ca – Na – K system show that the hydrolysis of feldspars is proportional to that of mafic minerals (losses in Mg), although the hydrolysis of the plagioclases (Ca, Na) is more intense than that of ferromagnesian minerals. The studied materials are localised in the domain of kaolinitisation, except for nodular materials which are slightly lateritised. The change in the behaviour of Mg in the weathering environment is expressed by the low values in Ca/Mg ratio. Potassium and Be are leached in the soil in association with Mg. The order of mobility of the elements in the weathering environment is: Ca ≈  Na > Fe2+ ≈ Sr > Mg ≈ Co > Mn > Li > Ba > Rb > P > Cd > Ni > Si > Be > K > Sn. The enrichments in K, Cs and Be in saprolites are linked to the presence of illite. Cesium accumulation in the soil is due to the presence of kaolinite. The most stable system is: Hf – Nb – W – U. Saprolites, nodular and loose clayey materials are depleted in REE relative to the parent rock. REE exhibit three types of behaviour along the Bengbis profile like indicated by (La/Yb)N ratio values ((La/Yb)N < 1, (La/Yb)N ~ 1 and (La/Yb)N > 1). Light REE and Middle REE accumulate in the weathering materials for pH values ranging between 5.5 and 5.6 and for those of Eh varying between +60 and +70mV. The order of mobility of REE in these horizons is: Middle REE > Heavy REE ≈ Light REE. This fact is counter-intuitive, because Heavy REE are more mobile in supergene environment than Light REE. Adsorption or co-precipitation of LREE onto Fe oxides mainly may control the concentration of these elements in the profile. Weak Ce anomalies in the weathering materials of Bengbis area, due to the change in Ce3+ to Ce4+, are probably due to the presence of low amounts in rhabdophane. The studied weathering materials show a fractionation in Gd (Gd/Gd* ~0.70 – 0.84) due to intense chemical leaching. This fact has been rarely reported in lateritic weathering environment. It appears that, a part of Gd distribution and remobilization is controlled by mafic minerals in the studied weathered materials. REE distribution and mobilization are thus controlled by (1) adsorption or co-precipitation in mafic and Fe minerals, (2) and slightly by REE-bearing minerals such as rhabdophane found in the studied weathering profile.  


2020 ◽  
Author(s):  
Nicolas Freslon ◽  
Emmanuelle Pucéat ◽  
Arnaud Brayard ◽  
Germain Bayon

&lt;p&gt;The aftermath of the end-Permian mass extinction is marked by large and recurrent perturbations of the environment and of the biosphere, which are thought to have delayed the recovery of marine ecosystems. A potential widespread loss of vegetation cover linked to destabilization of terrestrial ecosystems along with the climate warming that persisted for several million years after the Permian-Triassic boundary likely contributed to the markedly enhanced soil erosion and intensified continental chemical weathering recorded in the Early Triassic (Algeo and Twitchett, 2010). As continental weathering delivers nutrients to the oceans, this process could have played a major role in the repeated development of anoxic conditions by sustaining primary productivity and export of organic matter to the seafloor (Algeo and Twitchett, 2010; Sun et al., 2018). Yet our knowledge of the importance of this process in triggering anoxic conditions is currently hampered by the lack of proxies providing chemical weathering records at a local scale. In this study, we tested a novel proxy of chemical weathering intensity at the local scale, based on the coupled isotopic composition of hafnium and neodymium in clay minerals, to explore the links between chemical weathering, climate fluctuations, and anoxia in the western USA basin during the Early Triassic. This proxy has been recently calibrated in modern environments (Bayon et al., 2016) but has only been scarcely applied to deep-time environments.&lt;/p&gt;&lt;p&gt;We analyzed clay sediments for their Hf and Nd isotope composition from 5 sections within the western USA basin (that encompasses the Smithian-Spathian boundary (SSB). The well -stablished bio-chemo-stratigraphical frame of this basin allows the exploration of the respective timing of anoxia establishment and variations in chemical weathering of the continental masses adjacent to the basin at a high temporal resolution. Our new dataset highlights the existence of a decrease in chemical weathering of the continents surrounding the Basin at the Smithian-Spathian boundary, during the development of anoxic conditions marked by enhanced organic matter burial in the sediments. Our new data therefore bring new light on the links between nutrient inputs linked to modifications in continental weathering and the establishment of anoxic conditions in the western USA basin. The decrease in continental chemical weathering depicted in our data set occurs during the global cooling event identified by conodont &amp;#160;d&lt;sup&gt;18&lt;/sup&gt;O records in other regions of the word (Goudemand et al., 2019). This cooling may have promoted a decrease in the intensity of the hydrological cycle and the establishment of more arid conditions in the western USA basin, impeding chemical weathering in the studied area. &amp;#160;&lt;/p&gt;&lt;p&gt;Algeo, T. J. &amp; Twitchett, R. J. (2010). Geology, 38(11), 1023-1026.&lt;/p&gt;&lt;p&gt;Bayon, G. et al. (2016). Earth and Planetary Science Letters, 438, 25-36.&lt;/p&gt;&lt;p&gt;Goudemand, N. et al. (2019). Earth-Science Reviews.&lt;/p&gt;&lt;p&gt;Sun, H. et al. (2018). Proceedings Nation. Academy of Sciences, 115(15), 3782-3787.&lt;/p&gt;


2020 ◽  
Author(s):  
Madelyn Percy ◽  
Larry Benninger

&lt;p&gt;Little data currently exist on the chemistry of soils on the island of San Crist&amp;#243;bal, Gal&amp;#225;pagos, despite the importance of this data in understanding how the island has weathered through time. We sought to resolve this lack of data by surveying soils from different elevations and in different climate zones across the island. We collected soil samples from transects and sites across a precipitation-gradient in order to describe the mineralogy and chemistry of the soils, and to understand how soils have weathered in different precipitation regimes across the island. We used a mass balance approach, coupled with chemical weathering indices, to understand profile-scale to site-scale differences in weathering.&lt;/p&gt;&lt;p&gt;Climate-dependent shifts in soil characteristics are apparent: at the wettest sites, the soils have the lowest pH, the highest percentage of amorphous material, and the highest loss on ignition values. We compared the saprolite, the basal material from the soil pits in which the basalt bedrock&amp;#8217;s texture was still apparent but the material was extremely friable, and previously reported unweathered bedrock data, showing that the saprolite was highly weathered relative to the unweathered bedrock. Using the mass balance approach, we show that while base cations have been lost from soils relative to the parent material underlying the profiles, aluminum and iron concentrations have remained the same or have increased.&lt;/p&gt;&lt;p&gt;&amp;#160;We used chemical indices of weathering as evidence for the relationship between weathering intensity and precipitation, with greater weathering intensity observed in the very humid highlands compared to the less intense weathering that has occurred in the arid lowlands. The windward side of the island shows higher intensities of weathering than the leeward side. Our findings conform with other soil chemistry studies on the islands of Santa Cruz and Isabela, also in the Gal&amp;#225;pagos archipelago, showing that more intense weathering, accompanied by a greater loss of mobile elements, is observed at wetter sites.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document