scholarly journals Quantitative simulation of the relationships between cultivated land-use patterns and non-point source pollutant loads at a township scale in Chaohu Lake Basin, China

CATENA ◽  
2022 ◽  
Vol 208 ◽  
pp. 105776
Author(s):  
Min Min ◽  
Xuejun Duan ◽  
Wei Yan ◽  
Changhong Miao
2010 ◽  
Vol 62 (7) ◽  
pp. 1667-1675 ◽  
Author(s):  
C. E. Lin ◽  
C. M. Kao ◽  
C. J. Jou ◽  
Y. C. Lai ◽  
C. Y. Wu ◽  
...  

The Houjing River watershed is one of the three major river watersheds in the Kaohsiung City, Taiwan. Based on the recent water quality analysis, the Houjing River is heavily polluted. Both point and non-point source (NPS) pollutants are the major causes of the poor water quality in the Houjing River. Investigation results demonstrate that the main point pollution sources included municipal, agricultural, and industrial wastewaters. In this study, land use identification in the Houjing River watershed was performed by integrating the skills of geographic information system (GIS) and global positioning system (GPS). Results show that the major land-use patterns in the upper catchment of the Houjing River watershed were farmlands, and land-use patterns in the mid to lower catchment were residential and industrial areas. An integrated watershed management model (IWMM) and Enhanced Stream Water Quality Model (QUAL2K) were applied for the hydrology and water quality modeling, watershed management, and carrying capacity calculation. Modeling results show that the calculated NH3-N carrying capacity of the Houjing River was only 31 kg/day. Thus, more than 10,518 kg/day of NH3-N needs to be reduced to meet the proposed water quality standard (0.3 mg/L). To improve the river water quality, the following remedial strategies have been developed to minimize the impacts of NPS and point source pollution on the river water quality: (1) application of BMPs [e.g. source (fertilizer) reduction, construction of grassy buffer zone, and land use management] for NPS pollution control; (2) application of river management scenarios (e.g. construction of the intercepting and sewer systems) for point source pollution control; (3) institutional control (enforcement of the industrial wastewater discharge standards), and (4) application of on-site wastewater treatment systems for the polishment of treated wastewater for water reuse.


Author(s):  
T. H. Zhang ◽  
H. W. Ji ◽  
Y. Hu ◽  
Q. Ye ◽  
Y. Lin

Remote Sensing (RS) and Geography Information System (GIS) technologies are widely used in ecological analysis and regional planning. With the advantages of large scale monitoring, combination of point and area, multiple time-phases and repeated observation, they are suitable for monitoring and analysis of environmental information in a large range. In this study, support vector machine (SVM) classification algorithm is used to monitor the land use and land cover change (LUCC), and then to perform the ecological evaluation for Chaohu lake tourism area quantitatively. The automatic classification and the quantitative spatial-temporal analysis for the Chaohu Lake basin are realized by the analysis of multi-temporal and multispectral satellite images, DEM data and slope information data. Furthermore, the ecological buffer zone analysis is also studied to set up the buffer width for each catchment area surrounding Chaohu Lake. The results of LUCC monitoring from 1992 to 2015 has shown obvious affections by human activities. Since the construction of the Chaohu Lake basin is in the crucial stage of the rapid development of urbanization, the application of RS and GIS technique can effectively provide scientific basis for land use planning, ecological management, environmental protection and tourism resources development in the Chaohu Lake Basin.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Juan Huang ◽  
Jinyan Zhan ◽  
Haiming Yan ◽  
Feng Wu ◽  
Xiangzheng Deng

It has been widely accepted that there is a close relationship between the land use type and water quality. There have been some researches on this relationship from the perspective of the spatial configuration of land use in recent years. This study aims to analyze the influence of various land use types on the water quality within the Chaohu Lake Basin based on the water quality monitoring data and RS data from 2000 to 2008, with the small watershed as the basic unit of analysis. The results indicated that there was significant negative correlation between forest land and grassland and the water pollution, and the built-up area had negative impacts on the water quality, while the influence of the cultivated land on the water quality was very complex. Besides, the impacts of the landscape diversity on the indicators of water quality within the watershed were also analyzed, the result of which indicated there was a significant negative relationship between them. The results can provide important scientific reference for the local land use optimization and water pollution control and guidance for the formulation of policies to coordinate the exploitation and protection of the water resource.


2021 ◽  
Vol 13 (1) ◽  
pp. 358
Author(s):  
Mingxin Wen ◽  
Ting Zhang ◽  
Long Li ◽  
Longqian Chen ◽  
Sai Hu ◽  
...  

The land ecosystem provides essential natural resources for the survival and development of human beings. Therefore, land ecological security (LES) acts as a vital part of the sustainable development of human society and economy. This study included a dynamic analysis of land use change in Chaohu Lake Basin (CLB) in China from 1998 to 2018, evaluating the spatiotemporal patterns of LES at both the administrative district scale and grid scale (200 m × 200 m). Then, geographic detector was applied to analyze the influence of the assessment index on LES. The results show that in the 2008–2018 period, land use changed more significantly compared to the 1998–2008 period. The continuous extension of urban land led to a decrease in the areas of other land use types. In the CLB (administrative district scale), the LES levels varied throughout the study period. In Changfeng, Feixi, and the other three regions, the LES has been significantly improved. However, the LES in six other regions showed different degrees of decline, particularly in Hexian and Urban Hefei. Simultaneously, the LES showed a gradual improvement at a 200 m × 200 m grid scale level. The influence of anthropogenic factors on the LES was stronger than natural factors. Findings from this study provide reliable guidance for improving the ecosystem environment in ecologically fragile areas.


1993 ◽  
Vol 14 (1) ◽  
pp. 25-42 ◽  
Author(s):  
Jordan E. Kerber

Selecting an effective archaeological survey takes careful consideration given the interaction of several variables, such as the survey's goals, nature of the data base, and budget constraints. This article provides justification for a “siteless survey” using evidence from a project on Potowomut Neck in Rhode Island whose objective was not to locate sites but to examine the distribution and density of prehistoric remains to test an hypothesis related to land use patterns. The survey strategy, random walk, was chosen because it possessed the advantages of probabilistic testing, as well as the ease of locating sample units. The results were within the limits of statistical validity and were found unable to reject the hypothesis. “Siteless survey” may be successfully applied in similar contexts where the distribution and density of materials, as opposed to ambiguously defined sites, are sought as evidence of land use patterns, in particular, and human adaptation, in general.


Sign in / Sign up

Export Citation Format

Share Document