point source pollution
Recently Published Documents


TOTAL DOCUMENTS

727
(FIVE YEARS 189)

H-INDEX

42
(FIVE YEARS 9)

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 211
Author(s):  
Lei Hou ◽  
Zhongyuan Zhou ◽  
Ruyan Wang ◽  
Jianxin Li ◽  
Fei Dong ◽  
...  

In recent years, freshwater resource contamination by non-point source pollution has become particularly prominent in China. To control non-point source (NPS) pollution, it is important to estimate NPS pollution exports, identify sources of pollution, and analyze the pollution characteristics. As such, in this study, we established the modified export coefficient model based on rainfall and terrain to investigate the pollution sources and characteristics of non-point source total nitrogen (TN) and total phosphorus (TP) throughout the Huangqian Reservoir watershed—which serves as an important potable water source for the main tributary of the lower Yellow River. The results showed that: (1) In 2018, the non-point source total nitrogen (TN) and total phosphorus (TP) loads in the Huangqian Reservoir basin were 707.09 t and 114.42 t, respectively. The contribution ratios to TN export were, from high to low, rural life (33.58%), farmland (32.68%), other land use types (20.08%), and livestock and poultry breeding (13.67%). The contribution ratios to TP export were, from high to low, rural life (61.19%), livestock and poultry breeding (21.65%), farmland (12.79%), and other land use types (4.38%). The non-point source pollution primarily originated from the rural life of the water source protection zone. (2) Non-point source TN and TP pollution loads and load intensities showed significantly different spatial distribution patterns throughout the water source protection area. Specifically, their load intensities and loads were the largest in the second-class protected zone, which is the key source area of non-point source pollution. (3) When considering whether to invest in agricultural land fertilizer control or rural domestic sewage, waste, and livestock manure pollution control, the latter is demonstrably more effective. Thus, in addition to putting low-grade control on agricultural fertilizer loss, to rapidly and effectively improve potable water quality, non-point source pollution should, to a larger extent, also be controlled through measures such as establishing household biogas digesters, introducing village sewage treatment plants, and improving the recovery rate of rural domestic garbage. The research results discussed herein provide a theoretical basis for formulating a reasonable and effective protection plan for the Huangqian Reservoir water source and can potentially be used to do the same for other similar freshwater resources.


Land ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1387
Author(s):  
Xuekai Chen ◽  
Guojian He ◽  
Xiaobo Liu ◽  
Bogen Li ◽  
Wenqi Peng ◽  
...  

The prevention and control of non-point source pollution is an important link in managing basin water quality and is an important factor governing the environmental protection of watershed water in China over the next few decades. The control of non-point source pollution relies on the recognition of the amount, location, and influencing factors. The watershed nonpoint source pollution mechanism model is an effective method to address the issue. However, due to the complexity and randomness of non-point source pollution, both the development and application of the watershed water environment model have always focused on the accuracy and rationality of model parameters. In this pursuit, the present study envisaged the temporal and spatial heterogeneity of non-point source pollution caused by the complex underlying surface conditions of the watershed, and the insufficient coverage of hydrological and water quality monitoring stations. A refined watershed non-point source pollution simulation method, combining the Monte Carlo analytic hierarchy process (MCAHP) and the sub-watershed parameter transplantation method (SWPT), was established on the basis of the migration and transformation theory of the non-point source pollution, considering the index selection, watershed division, sub-watershed simulation, and parameter migration. Taking the Erhai Lake, a typical plateau lake in China, as the representative research object, the MCAHP method effectively reduced the uncertainty of the weights of the watershed division indexes compared to the traditional AHP method. Furthermore, compared to the traditional all watershed parameter simulation (AWPS) approach, the simulation accuracy was improved by 40% using the SWPT method, which is important for the prevention and control of non-point source pollution in large-scale watersheds with significant differences in climatic and topographic conditions. Based on the simulation results, the key factors affecting the load of the non-point source pollution in the Erhai watershed were identified. The results showed that the agricultural land in Erhai Lake contributed a majority of the load for several reasons, including the application of nitro phosphor complex fertilizer. Among the different soil types, paddy soil was responsible for the largest pollution load of total nitrogen and total phosphorus discharge into the lake. The zones with slopes of 0°‒18° were found to be the appropriate area for farming. Our study presents technical methods for the assessment, prevention, and control of non-point source pollution load in complex watersheds.


Sign in / Sign up

Export Citation Format

Share Document