Transition metals as dopants on nickel borides: Their catalytic activity effect on hydrogenation reactions

2008 ◽  
Vol 133-135 ◽  
pp. 49-55 ◽  
Author(s):  
Delicia Acosta ◽  
Norma Ramírez ◽  
Eleonora Erdmann ◽  
Hugo Destéfanis ◽  
Elio Gonzo
Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 656
Author(s):  
Henrietta Kovács ◽  
Krisztina Orosz ◽  
Gábor Papp ◽  
Ferenc Joó ◽  
Henrietta Horváth

Na2[Ir(cod)(emim)(mtppts)] (1) with high catalytic activity in various organic- and aqueous-phase hydrogenation reactions was immobilized on several types of commercially available ion-exchange supports. The resulting heterogeneous catalyst was investigated in batch reactions and in an H-Cube flow reactor in the hydrogenation of phenylacetylene, diphenylacetylene, 1-hexyne, and benzylideneacetone. Under proper conditions, the catalyst was highly selective in the hydrogenation of alkynes to alkenes, and demonstrated excellent selectivity in C=C over C=O hydrogenation; furthermore, it displayed remarkable stability. Activity of 1 in hydrogenation of levulinic acid to γ-valerolactone was also assessed.


2015 ◽  
Vol 17 (3) ◽  
pp. 1702-1709 ◽  
Author(s):  
Mingmei Zhong ◽  
Xiaoming Zhang ◽  
Yaopeng Zhao ◽  
Can Li ◽  
Qihua Yang

Encapsulated multicomponent catalyst, Rh-MonoPhos, in nanoreactors showed excellent catalytic activity in the asymmetric hydrogenation reactions.


2018 ◽  
Vol 54 (68) ◽  
pp. 9502-9505 ◽  
Author(s):  
Wei Sun ◽  
Zhiqiang Wang ◽  
Qian Wang ◽  
Waqas Qamar Zaman ◽  
Limei Cao ◽  
...  

Compressive strain is induced in Pt crystals by alloying with smaller-sized 3d transition metals, which enhances the H2–NO reduction reaction activity by decreasing the energy required for breaking the N–O bond.


Nanoscale ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 4903-4908 ◽  
Author(s):  
Kang Liu ◽  
Junwei Fu ◽  
Li Zhu ◽  
Xiaodong Zhang ◽  
Hongmei Li ◽  
...  

Electrochemical nitrogen reduction reaction (NRR) is a promising route to produce ammonia under mild conditions. Single-atom W supported on BP was screened as a promising electrocatalyst with high catalytic activity, stability, and selectively for NRR.


2019 ◽  
Vol 55 (85) ◽  
pp. 12797-12800 ◽  
Author(s):  
Hector Prats ◽  
Juan José Piñero ◽  
Francesc Viñes ◽  
Stefan T. Bromley ◽  
Ramón Sayós ◽  
...  

Transition Metal Carbides (TMCs) are proposed as viable replacements for scarce and expensive late Transition Metals (TMs) for heterogeneous catalysis involving hydrogenation reactions or steps.


2020 ◽  
Author(s):  
Melissa López-Viveros ◽  
Isabelle Favier ◽  
Montserrat Gómez ◽  
Jean-François Lahitte ◽  
Jean-Christophe Remigy

2015 ◽  
Vol 802 ◽  
pp. 531-536 ◽  
Author(s):  
Norhaslinda Nasuha ◽  
B.H. Hameed

The Fe2+/modified silica catalysts have been substituted with four types of transition metals such as Fe3+, Cr3+, Mn3+ and Mo. The catalytic activity of these catalysts has been tested for the oxidative degradation of Reactive Black 5 (RB5) at 30°C and pH 4.5. The substituted Fe2+/modified silica with Fe3+ (Fe2+:Fe3+/ m-SiO2) exhibited the highest catalytic performance compared to others transition metals by degrading the RB5 nearly to 95%. This catalyst possessed on high stability by maintaining its performance during the three successive cycles of reaction. These findings can be ascribed to the plausible enhancement in the formation of hydroxyl radicals (HO●) due to the effective redox between Fe2+ and Fe3+


Sign in / Sign up

Export Citation Format

Share Document