black phosphorene
Recently Published Documents


TOTAL DOCUMENTS

210
(FIVE YEARS 147)

H-INDEX

21
(FIVE YEARS 10)

Author(s):  
Bo Zhang ◽  
Lihui Zhang ◽  
Na Yang ◽  
Xuewen Zhao ◽  
Chengxiang Chen ◽  
...  

2021 ◽  
Vol 104 (23) ◽  
Author(s):  
M. U. Muzaffar ◽  
Xue-Sen Wang ◽  
Shunhong Zhang ◽  
Ping Cui ◽  
Zhenyu Zhang

Author(s):  
Abhishek Kumar Adak ◽  
Devina Sharma ◽  
Shobhana Narasimhan

Abstract We have performed density functional theory calculations to study blue phosphorene and black phosphorene on metal substrates. The substrates considered are the (111) and (110) surfaces of Al, Cu, Ag, Ir, Pd, Pt and Au and the (0001) and (10$\bar{1}$0) surfaces of Zr and Sc. The formation energy $E_{\rm F}$ is negative (energetically favorable) for all 36 combinations of overlayer and substrate. By comparing values of $\Delta{\Omega}$, the change in free energy per unit area, as well as the overlayer-substrate binding energy $E_{\rm b}$, we identify that Ag(111), Al(110), Cu(111), Cu(110) and possibly Au(110) may be especially suitable substrates for the synthesis and subsequent exfoliation of blue phosphorene, and the Ag(110) and Al(111) substrates for the synthesis of black phosphorene. However, these conclusions are drawn assuming the source of P atoms is bulk phosphorus, and can alter upon changing synthesis conditions (chemical potential of phosphorus). Thus, when the source of phosphorus atoms is P$_4$, blue phosphorene is favored only over Pt(111). We find that for all combinations of overlayer and substrate, the charge transfer per bond can be captured by the universal descriptor $\mathcal{D} = \Delta \chi/\Delta \mathcal{R}$, where $\Delta \chi$ and $\Delta \mathcal{R}$ are, respectively, the differences in electronegativity and atomic size between phosphorus and the substrate metal.


Author(s):  
Cuihong Yang ◽  
J. Y. Zhang ◽  
R. Wieser ◽  
Wen Xu

Abstract We consider the transverse electric (TE) plasmonic modes supported by black phosphorene (BP) in a parallel waveguide structure with left-handed material (LHM) instead of the conventional right-handed dielectric material. The existence condition of the TE BP surface plasmon polariton (SPP) is $\mathrm{Im}\sigma>0$. When an electric field is polarized along one of the two orthogonal crystal axes, the anisotropic symmetric and anti-symmetric plasmonic modes depend on the incident optical energy, the chemical potential, and the distance between two BP sheets can be observed. The symmetric mode has a more extensive effective refractive index, which possesses stronger field confinement. With a decreasing distance $d$ between two BP sheets, the coupling strength between the two separate BPSPP waves increases. When $d$ is small enough, the anti-symmetric mode root does not exist. LHMs can be used to realize a TE BPSPP mode to enhance the localization of the BPSPP, which is a practical method in optoelectronic devices based on black phosphorene.


Sign in / Sign up

Export Citation Format

Share Document