In situ XAS with high-energy resolution: The changing structure of platinum during the oxidation of carbon monoxide

2009 ◽  
Vol 145 (3-4) ◽  
pp. 300-306 ◽  
Author(s):  
Jagdeep Singh ◽  
Moniek Tromp ◽  
Olga V. Safonova ◽  
Pieter Glatzel ◽  
Jeroen A. van Bokhoven
2015 ◽  
Vol 112 (52) ◽  
pp. 15803-15808 ◽  
Author(s):  
Ofer Hirsch ◽  
Kristina O. Kvashnina ◽  
Li Luo ◽  
Martin J. Süess ◽  
Pieter Glatzel ◽  
...  

The lanthanum-based materials, due to their layered structure and f-electron configuration, are relevant for electrochemical application. Particularly, La2O2CO3 shows a prominent chemoresistive response to CO2. However, surprisingly less is known about its atomic and electronic structure and electrochemically significant sites and therefore, its structure–functions relationships have yet to be established. Here we determine the position of the different constituents within the unit cell of monoclinic La2O2CO3 and use this information to interpret in situ high-energy resolution fluorescence-detected (HERFD) X-ray absorption near-edge structure (XANES) and valence-to-core X-ray emission spectroscopy (vtc XES). Compared with La(OH)3 or previously known hexagonal La2O2CO3 structures, La in the monoclinic unit cell has a much lower number of neighboring oxygen atoms, which is manifested in the whiteline broadening in XANES spectra. Such a superior sensitivity to subtle changes is given by HERFD method, which is essential for in situ studying of the interaction with CO2. Here, we study La2O2CO3-based sensors in real operando conditions at 250 °C in the presence of oxygen and water vapors. We identify that the distribution of unoccupied La d-states and occupied O p- and La d-states changes during CO2 chemoresistive sensing of La2O2CO3. The correlation between these spectroscopic findings with electrical resistance measurements leads to a more comprehensive understanding of the selective adsorption at La site and may enable the design of new materials for CO2 electrochemical applications.


2019 ◽  
Vol 53 (3) ◽  
pp. 16-22
Author(s):  
Jinzhao Zhang ◽  
Hongzhi Li ◽  
Xianguo Tuo

AbstractIn-situ measurement of marine sediment radioactivity does not destroy the stratification of radionuclides in the sediment. We develop a novel seabed sediment radioactive measurement technique using a High Purity Germanium (HPGe) detector. The overall measurement system is designed, and the detector energy calibration is performed. The efficiency is calculated based on Monte Carlo simulations using the MCNP5 code. We compared the efficiency and energy resolution with the NaI(Tl) detection through experiments. NaI(Tl) detection is incapable of identifying the 137Cs artificial nuclides in seabed sediments due to the energy resolution limit. Hence, underwater HPGe detection is utilized due to its high energy resolution, which enables the detection of artificial nuclides 137Cs. The proposed method is of great significance in evaluating marine radioactive pollution.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Yi-Tao Cui ◽  
Yoshihisa Harada ◽  
Hideharu Niwa ◽  
Tatsuya Hatanaka ◽  
Naoki Nakamura ◽  
...  

ChemInform ◽  
2006 ◽  
Vol 37 (38) ◽  
Author(s):  
Jeroen A. van Bokhoven ◽  
Catherine Louis ◽  
Jeffrey T. Miller ◽  
Moniek Tromp ◽  
Olga V. Safonova ◽  
...  

2006 ◽  
Vol 118 (28) ◽  
pp. 4767-4770 ◽  
Author(s):  
Jeroen A. van Bokhoven ◽  
Catherine Louis ◽  
Jeffrey T. Miller ◽  
Moniek Tromp ◽  
Olga V. Safonova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document