Polyadenylation sites and their characteristics in the genome of channel catfish (Ictalurus punctatus) as revealed by using RNA-Seq data

Author(s):  
Suxu Tan ◽  
Wenwen Wang ◽  
Tao Zhou ◽  
Yujia Yang ◽  
Dongya Gao ◽  
...  
2012 ◽  
Vol 36 (2) ◽  
pp. 314
Author(s):  
Jian-feng LU ◽  
Chang-wei MENG ◽  
Jin LI ◽  
Zi-hui GONG ◽  
Lin LIN ◽  
...  

Author(s):  
Jillian K. Malecki ◽  
Luke A. Roy ◽  
Cova R. Arias ◽  
Miles D. Lange ◽  
Craig A. Shoemaker ◽  
...  

Author(s):  
Oliva Mendoza‐Pacheco ◽  
Gaspar Manuel Parra‐Bracamonte ◽  
Xochitl Fabiola De la Rosa‐Reyna ◽  
Ana María Sifuentes‐Rincón ◽  
Isidro Otoniel Montelongo‐Alfaro ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ryan Lusk ◽  
Evan Stene ◽  
Farnoush Banaei-Kashani ◽  
Boris Tabakoff ◽  
Katerina Kechris ◽  
...  

AbstractAnnotation of polyadenylation sites from short-read RNA sequencing alone is a challenging computational task. Other algorithms rooted in DNA sequence predict potential polyadenylation sites; however, in vivo expression of a particular site varies based on a myriad of conditions. Here, we introduce aptardi (alternative polyadenylation transcriptome analysis from RNA-Seq data and DNA sequence information), which leverages both DNA sequence and RNA sequencing in a machine learning paradigm to predict expressed polyadenylation sites. Specifically, as input aptardi takes DNA nucleotide sequence, genome-aligned RNA-Seq data, and an initial transcriptome. The program evaluates these initial transcripts to identify expressed polyadenylation sites in the biological sample and refines transcript 3′-ends accordingly. The average precision of the aptardi model is twice that of a standard transcriptome assembler. In particular, the recall of the aptardi model (the proportion of true polyadenylation sites detected by the algorithm) is improved by over three-fold. Also, the model—trained using the Human Brain Reference RNA commercial standard—performs well when applied to RNA-sequencing samples from different tissues and different mammalian species. Finally, aptardi’s input is simple to compile and its output is easily amenable to downstream analyses such as quantitation and differential expression.


Sign in / Sign up

Export Citation Format

Share Document