fatty acid desaturase 2
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 22)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Shahan Mamoor

Women diagnosed with triple negative breast cancer can benefit neither from endocrine therapy nor from HER2-targeted therapies (1). We mined published microarray datasets (2, 3) to determine in an unbiased fashion and at the systems level genes most differentially expressed in the primary tumors of patients with breast cancer. We report here significant differential expression of the gene encoding fatty acid desaturase 2, FADS2, when comparing the tumor cells of patients with triple negative breast cancer to normal mammary ductal cells (2). FADS2 was also differentially expressed in bulk tumor in human breast cancer (3). FADS2 mRNA was present at significantly increased quantities in TNBC tumor cells relative to normal mammary ductal cells. Analysis of human survival data revealed that expression of FADS2 in primary tumors of the breast was correlated with post-progression survival in patients with luminal A type cancer, while within triple negative breast cancer, primary tumor expression of FADS2 was correlated with overall survival in patients with luminal androgen receptor subtype disease. FADS2 may be of relevance to initiation, maintenance or progression of triple negative breast cancers.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mid-Eum Park ◽  
Jae-Young Yun ◽  
Hyun Uk Kim

The demand for vegetable oil, which is mainly used for dietary purposes and cooking, is steadily increasing worldwide. It is often desirable to reduce unsaturation levels of fatty acids in order to increase storage stability and reduce trans-fat generation during cooking. Functional disruption of FATTY ACID DESATURASE 2 (FAD2) prevents the conversion of monounsaturated oleic acid to polyunsaturated linoleic acid, thereby enhancing the production of the desirable oleic acid. However, FAD2 null alleles, due to growth defects under stress conditions, are impractical for agronomical purposes. Here, we aimed to attenuate FAD2 activity in planta while avoiding adverse growth effects by introducing amino-acid substitutions using CRISPR base editors. In Arabidopsis, we applied the adenine base editor (ABE) and cytosine base editor (CBE) to induce semi-random base substitutions within several selected FAD2 coding regions. Isolation of base-edited fad2 alleles with higher oleic acid revealed that the CBE application induced C-to-T and/or C-to-G base substitutions within the targeted sequences, resulting in an alteration of the FAD2 enzyme activities; for example, fad2-144 with multiple C-to-G base substitutions showed less growth defects but with a significant increase in oleic acids by 3-fold higher than wild type. Our “proof-of-concept” approach suggests that equivalent alleles may be generated in vegetable oil crops via precision genome editing for practical cultivation. Our targeted semi-random strategy may serve as a new complementary platform for planta engineering of useful agronomic traits.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mahsa Mahmoudinezhad ◽  
Mahdieh Abbasalizad Farhangi ◽  
Houman Kahroba ◽  
Parvin Dehghan

AbstractObesity prevalence have tripled in the past decades. It is logical to consider new approaches to halt its prevalence. In this concept, considering the effect of interaction between fatty acid desaturase 2 (FADS2) gene variants and dietary advanced glycation end products (AGEs) on obesity-related characteristics seems to be challenging. The present cross-sectional study conducted among 347 obese individuals. A validated semi-quantitative 147-item food frequency questionnaire (FFQ) was used to estimate dietary intakes and American multiethnic database was used to calculate AGEs content of food items which were not available in Iranian Food Composition Table (FCT). FADS2 gene variants were determined according to Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Analysis of covariance (ANCOVA) was used to evaluate the modifier effect of FADS2 gene-dietary AGEs on biochemical values. Based on our findings, no significant differences was reported in term of biochemical variables between AGEs tertiles. In contrast, percent of macronutrients (carbohydrate, protein and fat) of total calorie intake, amount of daily intake of fiber and meat groups showed a significant differences among AGEs tertiles. Furthermore, statistical assays clarified the modifier effects of FADS2 gene-AGEs on weight (Pinteraction = 0.04), fat mass (Pinteraction = 0.03), waist circumference (Pinteraction = 0.008) and cholesterol (Pinteraction = 0.04) level. Accordingly, higher consumption of protein or fat based foods constitute high amount of AGEs and heterozygote genotype for FADS2 tended to show lower level of AGEs content. These findings address further investigation to develop new approaches for nutritional interventions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shilpa S. Shetty ◽  
N. Suchetha Kumari

AbstractSeveral factors influence an individual’s susceptibility in inter-individual lipid changes and its role in the onset of type-2 diabetes mellitus (T2DM). Considering the above fact, the present investigation focuses on determining the association between fatty acid desaturase 2 (FADS2) rs174575 (C/G) polymorphism, circulating lipid levels and susceptibility to type-2 diabetes mellitus. As per the inclusion and exclusion criteria a total of 429 subjects (non-diabetic-216; diabetic-213) were recruited for the study. Glycemic and lipid profile status were assessed using commercially available kits. Based on the previous reports SNP rs174575 of fatty acid desaturase gene (FADS2) was selected and identified using the dbSNP database. The amplified products were sequenced by means of Sanger sequencing method. Lipid profile status and apolipoprotein levels revealed statistically significant difference between the groups. Three models were assessed namely, recessive model (CC vs CG + GG), dominant model (CC + CG vs GG) and additive model (CC vs CG vs GG). The recessive model, displayed a statistically significant variations between the circulating lipid levels in T2DM. The multivariate model with genotype (G allele carriers), triglyceride (TG) and insulin served as a predictive model. The study results potentiate the functional link between FADS2 gene polymorphism, lipid levels and type-2 diabetes mellitus.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1780
Author(s):  
Yan Zhang ◽  
Xiao-Qing Sun ◽  
Yu-Qing Ye ◽  
Qi Wang ◽  
Qing-Song Li ◽  
...  

Fatty acid desaturase 2 (fads2) is one of the rate-limiting enzymes in PUFAs biosynthesis. Compared with the diploid fish encoding one fads2, the allo-tetraploid common carp, one most important food fish, encodes two fads2 genes (fads2a and fads2b). The associations between the contents of different PUFAs and the polymorphisms of fads2a and fads2b have not been studied. The contents of 12 PUFAs in common carp individuals were measured, and the polymorphisms in the coding sequences of fads2a and fads2b were screened. We identified five coding single nucleotide polymorphisms (cSNPs) in fads2a and eleven cSNPs in fads2b. Using the mixed linear model and analysis of variance, a synonymous fads2a cSNP was significantly associated with the content of C20:3n-6. One non-synonymous fads2b cSNP (fads2b.751) and one synonymous fads2b cSNP (fads2b.1197) were associated with the contents of seven PUFAs and the contents of six PUFAs, respectively. The heterozygous genotypes in both loci were associated with higher contents than the homozygous genotypes. The fads2b.751 genotype explained more phenotype variation than the fads2b.1197 genotype. These two SNPs were distributed in one haplotype block and associated with the contents of five common PUFAs. These results suggested that fads2b might be the major gene responding to common carp PUFA contents and that fads.751 might be the main effect SNP. These cSNPs would be potential markers for future selection to improve the PUFA contents in common carp.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1093
Author(s):  
Grace Q. Chen ◽  
Kumiko Johnson ◽  
Tara J. Nazarenus ◽  
Grisel Ponciano ◽  
Eva Morales ◽  
...  

Seeds of castor (Ricinus communis) are enriched in oil with high levels of the industrially valuable fatty acid ricinoleic acid (18:1OH), but production of this plant is limited because of the cooccurrence of the ricin toxin in its seeds. Lesquerella (Physaria fendleri) is being developed as an alternative industrial oilseed because its seeds accumulate lesquerolic acid (20:1OH), an elongated form of 18:1OH in seed oil which lacks toxins. Synthesis of 20:1OH is through elongation of 18:1OH by a lesquerella elongase, PfKCS18. Oleic acid (18:1) is the substrate for 18:1OH synthesis, but it is also used by fatty acid desaturase 2 (FAD2) and FAD3 to sequentially produce linoleic and linolenic acids. To develop lesquerella that produces 18:1OH-rich seed oils such as castor, RNA interference sequences targeting KCS18, FAD2 and FAD3 were introduced to lesquerella to suppress the elongation and desaturation steps. Seeds from transgenic lines had increased 18:1OH to 1.1–26.6% compared with that of 0.4–0.6% in wild-type (WT) seeds. Multiple lines had reduced 18:1OH levels in the T2 generation, including a top line with 18:1OH reduced from 26.7% to 19%. Transgenic lines also accumulated more 18:1 than that of WT, indicating that 18:1 is not efficiently used for 18:1OH synthesis and accumulation. Factors limiting 18:1OH accumulation and new targets for further increasing 18:1OH production are discussed. Our results provide insights into complex mechanisms of oil biosynthesis in lesquerella and show the biotechnological potential to tailor lesquerella seeds to produce castor-like industrial oil functionality.


Meat Science ◽  
2021 ◽  
Vol 173 ◽  
pp. 108399
Author(s):  
Rafael Suárez-Mesa ◽  
Roger Ros-Freixedes ◽  
Marc Tor ◽  
Josep Reixach ◽  
Ramona N. Pena ◽  
...  

Author(s):  
Oliva Mendoza‐Pacheco ◽  
Gaspar Manuel Parra‐Bracamonte ◽  
Xochitl Fabiola De la Rosa‐Reyna ◽  
Ana María Sifuentes‐Rincón ◽  
Isidro Otoniel Montelongo‐Alfaro ◽  
...  

2021 ◽  
Vol 15 ◽  
pp. 117793222110057
Author(s):  
Nurul Jadid ◽  
Indah Prasetyowati ◽  
Nur Laili Alfina Rosidah ◽  
Dini Ermavitalini ◽  
Sri Nurhatika ◽  
...  

Reutealis trisperma oil is a new source for biodiesel production. The predominant fatty acids in this plant are stearic acid (9%), palmitic acid (10%), oleic acid (12%), linoleic acid (19%), and α-eleostearic acid (51%). The presence of polyunsaturated fatty acids (PUFAs), linoleic acid, and α-eleostearic acid decreases the oxidation stability of R. trisperma biodiesel. Although several studies have suggested that the fatty acid desaturase 2 (FAD2) enzyme is involved in the regulation of fatty acid desaturation, little is known about the genetic information of FAD2 in R. trisperma. The objectives of this study were to isolate, characterize, and determine the relationship between the R. trisperma FAD2 fragment and other Euphorbiaceae plants. cDNA fragments were isolated using reverse transcription polymerase chain reaction (PCR). The DNA sequence obtained by sequencing was used for further analysis. In silico analysis identified the fragment identity, subcellular localization, and phylogenetic construction of the R. trisperma FAD2 cDNA fragment and Euphorbiaceae. The results showed that a 923-bp partial sequence of R. trisperma FAD2 was successfully isolated. Based on in silico analysis, FAD2 was predicted to encode 260 amino acids, had a domain similarity with Omega-6 fatty acid desaturase, and was located in the endoplasmic reticulum membrane. The R. trisperma FAD2 fragment was more closely related to Vernicia fordii (HM755946.1).


Sign in / Sign up

Export Citation Format

Share Document