stearoyl coa desaturase
Recently Published Documents


TOTAL DOCUMENTS

779
(FIVE YEARS 115)

H-INDEX

76
(FIVE YEARS 9)

Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1209
Author(s):  
Piera Iommelli ◽  
Federico Infascelli ◽  
Nadia Musco ◽  
Micaela Grossi ◽  
Maria Ferrara ◽  
...  

Research on diet effects on buffalo meat quality may be critical to assess its possible consumption benefits in human nutrition. This study investigated, in growing buffalo bulls, the effects of two diets differing in total fat content and fatty acid profile on the activity and gene expression of Stearoyl-CoA Desaturase (SCD) in the adipose tissue and on meat quality. Twenty buffalo bulls, 6 months old, were randomly assigned to the two dietary treatments until slaughtering (about 400 kg body weight). No significant difference between the groups was observed for chemical composition, fatty acid profile and CLAs content of Longissimus thoracis as well as for the SCD gene expression. Such results seem to be in contrast with similar studies performed on other ruminant species, but confirm that important differences occur between buffalo and bovine species, such as the lower content in fat of buffalo meat. Our results also confirm that specific studies should be performed on buffalo, also in terms of the metabolic pathways activated by different diets.


2021 ◽  
Author(s):  
Jiemin Shen ◽  
Gang Wu ◽  
Ah-Lim Tsai ◽  
Ming Zhou

Mammalian cytochrome b5 (cyt b5) and cytochrome b5 reductase (b5R) are electron carrier proteins required for many membrane-embedded oxidoreductases. Both cyt b5 and b5R have a cytosolic domain anchored to the membrane by a single transmembrane helix (TM). It is not clear if b5R, cyt b5 and their partner oxidoreductases assemble as binary or ternary complexes. Here we show that b5R and cyt b5 form a stable binary complex, and that b5R, cyt b5 and a membrane-embedded oxidoreductase, stearoyl-CoA desaturase 1 (SCD1) form a stable ternary complex. The formation of the complexes significantly enhances electron transfer rates, and that the single TM of cyt b5 and b5R mediated assembly of the complexes. These results reveal a novel functional role of TMs in cyt b5 and b5R and suggest that an electron transport chain composed of a stable ternary complex may be a general feature in oxidoreductases that require the participation of cyt b5 and b5R.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi206-vi206
Author(s):  
Tomohiro Yamasaki ◽  
Lumin Zhang ◽  
Tyrone Dowdy ◽  
Adrian Lita ◽  
Mark Gilbert ◽  
...  

Abstract BACKGROUND Increased de novo lipogenesis is a hallmark of cancer metabolism. In this study, we interrogated the role of de novo lipogenesis in IDH1 mutated glioma’s growth and identified the key enzyme, Stearoyl-CoA desaturase 1 (SCD1) that provides this growth advantage. MATERIALS ANDMETHODS We prepared genetically engineered glioma cell lines (U251 wild-type: U251WT and U251 IDHR132H mutant: U251RH) and normal human astrocytes (empty vector induced-NHA: NHAEV and IDHR132H mutant: NHARH). Lipid metabolic analysis was conducted by using LC-MS and Raman imaging microscopy. SCD1 expression was investigated by The Cancer Genome Atlas (TCGA) data analysis and Western-blotting method. Knock-out of SCD1 was conducted by using CRISPR/Cas9 and shRNA. RESULTS Previously, we showed that IDH1 mut glioma cells have increased monounsaturated fatty acids (MUFAs). TCGA data revealed IDH mut glioma shows significantly higher SCD1 mRNA expression than wild-type glioma. Our model systems of IDH1 mut (U251RH, NHARH) showed increased expression of this enzyme compared with their wild-type counterpart. Moreover, addition of D-2HG to U251WT increased SCD1 expression. Herein, we showed that inhibition of SCD1 with CAY10566 decreased relative cell number and sphere forming capacity in a dose-dependent manner. Furthermore, addition of MUFAs were able to rescue the SCD1 inhibitor induced-cell death and sphere forming capacity. Knock out of SCD1 revealed decreased cell proliferation and sphere forming ability. Decreasing lipid content from the media did not alter the growth of these cells, suggesting that glioma cells rely on de novo lipid synthesis rather than scavenging them from the microenvironment. CONCLUSION Overexpression of IDH mutant gene altered lipid composition in U251 cells to enrich MUFA levels and we confirmed that D-2HG caused SCD1 upregulation in U251WT. We demonstrated the glioma cell growth requires SCD1 expression and the results of the present study may provide novel insights into the role of SCD1 in IDH mut gliomas growth.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1435
Author(s):  
Anna B. Petroff ◽  
Rebecca L. Weir ◽  
Charles R. Yates ◽  
Joseph D. Ng ◽  
Jerome Baudry

Stearoyl-CoA desaturase-1 (SCD1 or delta-9 desaturase, D9D) is a key metabolic protein that modulates cellular inflammation and stress, but overactivity of SCD1 is associated with diseases, including cancer and metabolic syndrome. This transmembrane endoplasmic reticulum protein converts saturated fatty acids into monounsaturated fatty acids, primarily stearoyl-CoA into oleoyl-CoA, which are critical products for energy metabolism and membrane composition. The present computational molecular dynamics study characterizes the molecular dynamics of SCD1 with substrate, product, and as an apoprotein. The modeling of SCD1:fatty acid interactions suggests that: (1) SCD1:CoA moiety interactions open the substrate-binding tunnel, (2) SCD1 stabilizes a substrate conformation favorable for desaturation, and (3) SCD1:product interactions result in an opening of the tunnel, possibly allowing product exit into the surrounding membrane. Together, these results describe a highly dynamic series of SCD1 conformations resulting from the enzyme:cofactor:substrate interplay that inform drug-discovery efforts.


2021 ◽  
Vol 224 (18) ◽  
Author(s):  
Bryon F. Tuthill II ◽  
Christopher J. Quaglia ◽  
Eileen O'Hara ◽  
Laura Palanker Musselman

ABSTRACT Diets high in carbohydrates are associated with type 2 diabetes and its co-morbidities, including hyperglycemia, hyperlipidemia, obesity, hepatic steatosis and cardiovascular disease. We used a high-sugar diet to study the pathophysiology of diet-induced metabolic disease in Drosophila melanogaster. High-sugar diets produce hyperglycemia, obesity, insulin resistance and cardiomyopathy in flies, along with ectopic accumulation of toxic lipids, or lipotoxicity. Stearoyl-CoA desaturase 1 is an enzyme that contributes to long-chain fatty acid metabolism by introducing a double bond into the acyl chain. Knockdown of stearoyl-CoA desaturase 1 in the fat body reduced lipogenesis and exacerbated pathophysiology in flies reared on high-sucrose diets. These flies exhibited dyslipidemia and growth deficiency in addition to defects in cardiac and gut function. We assessed the lipidome of these flies using tandem mass spectrometry to provide insight into the relationship between potentially lipotoxic species and type 2 diabetes-like pathophysiology. Oleic acid supplementation is able to rescue a variety of phenotypes produced by stearoyl-CoA desaturase 1 RNAi, including fly mass, triglyceride storage, gut development and cardiac failure. Taken together, these data suggest a protective role for monounsaturated fatty acids in diet-induced metabolic disease phenotypes.


2021 ◽  
Vol 22 (18) ◽  
pp. 9883
Author(s):  
Joshua Abd Alla ◽  
Yahya F. Jamous ◽  
Ursula Quitterer

Heart failure is a major cause of death worldwide with insufficient treatment options. In the search for pathomechanisms, we found up-regulation of an enzyme, stearoyl-CoA desaturase 1 (Scd1), in different experimental models of heart failure induced by advanced atherosclerosis, chronic pressure overload, and/or volume overload. Because the pathophysiological role of Scd1/SCD in heart failure is not clear, we investigated the impact of cardiac SCD upregulation through the generation of C57BL/6-Tg(MHCSCD)Sjaa mice with myocardium-specific expression of SCD. Echocardiographic examination showed that 4.9-fold-increased SCD levels triggered cardiac hypertrophy and symptoms of heart failure at an age of eight months. Tg-SCD mice had a significantly reduced left ventricular cardiac ejection fraction of 25.7 ± 2.9% compared to 54.3 ± 4.5% of non-transgenic B6 control mice. Whole-genome gene expression profiling identified up-regulated heart-failure-related genes such as resistin, adiponectin, and fatty acid synthase, and type 1 and 3 collagens. Tg-SCD mice were characterized by cardiac lipid accumulation with 1.6- and 1.7-fold-increased cardiac contents of saturated lipids, palmitate, and stearate, respectively. In contrast, unsaturated lipids were not changed. Together with saturated lipids, apoptosis-enhancing p53 protein contents were elevated. Imaging by autoradiography revealed that the heart-failure-promoting and membrane-spanning angiotensin II AT1 receptor protein of Tg-SCD hearts was significantly up-regulated. In transfected HEK cells, the expression of SCD increased the number of cell-surface angiotensin II AT1 receptor binding sites. In addition, increased AT1 receptor protein levels were detected by fluorescence spectroscopy of fluorescent protein-labeled AT1 receptor-Cerulean. Taken together, we found that SCD promotes cardiac dysfunction with overload of cardiotoxic saturated lipids and up-regulation of the heart-failure-promoting AT1 receptor protein.


2021 ◽  
pp. 1-14
Author(s):  
Eric Francisco Contreras-López ◽  
Carlos David Cruz-Hernández ◽  
Sergio Alberto Cortés-Ramírez ◽  
Abril Ramírez-Higuera ◽  
Carolina Peña-Montes ◽  
...  

2021 ◽  
Author(s):  
Justyna J. Gleba ◽  
Laura A. Marlow ◽  
Erin E. Miller ◽  
James L. Miller ◽  
Aylin Alasonyalilar-Demirer ◽  
...  

2021 ◽  
Vol 17 (7) ◽  
pp. 1349-1363
Author(s):  
Xiaoyang Zhao ◽  
Min Wang ◽  
Jingjing Liu ◽  
Xiong Su

Despite the widespread use of silica nanoparticles (SiNPs), their metabolic impact and mechanisms of action have not been well studied. Exposure to SiNPs induces insulin resistance (IR) in hepatocytes by endoplasmic reticulum (ER) stress via inositol-requiring protein 1α (IRE1α) activation of c-Jun N-terminal kinases (JNK). It has been well established that stearoyl CoA desaturase (SCD1) and its major product oleic acid elicited beneficial effects in restoring ER homeostasis. However, the potential coordination of SCD1 and IRE1α in determining SiNP regulation of insulin signaling is unclear. Herein, we investigated the effects of SCD1 and oleic acid on IR induced by SiNPs or thapsigargin in hepatocytes. SCD1 overexpression or oleic acid efficiently reversed SiNP-induced ER stress and IR, whereas the effects of thapsigargin treatment could not be restored. Thapsigargin diminished SCD1 protein levels, leading to the accumulation of IRE1α and sustained activation of the IRE1α/JNK pathway. Moreover, knockdown of activating transcription factor 4 (ATF4) upstream of SCD1 suppressed SiNP-induced SCD1 expression, rescued the activated IRE1α, and inhibited insulin signaling but was not able to restore the effects of thapsigargin. Collectively, downregulation of SCD1 and excess accumulation of IRE1α protein prevented the beneficial effects of exogenous oleic acid on IR induced by ER stress. Our results provide valuable mechanistic insights into the synergic regulation of IR by SiNPs and ER stress and suggest a combinational strategy to restore ER homeostasis by targeting SCD1 and IRE1α proteins, as well as supplementation of unsaturated fatty acids.


Sign in / Sign up

Export Citation Format

Share Document