Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host

Author(s):  
Juan Diego Maya ◽  
Bruce K. Cassels ◽  
Patricio Iturriaga-Vásquez ◽  
Jorge Ferreira ◽  
Mario Faúndez ◽  
...  
Nature ◽  
1951 ◽  
Vol 168 (4272) ◽  
pp. 438-439
Author(s):  
J. W. COOK

PLoS ONE ◽  
2016 ◽  
Vol 11 (3) ◽  
pp. e0150526 ◽  
Author(s):  
Valeria P. Sülsen ◽  
Vanesa Puente ◽  
Daniela Papademetrio ◽  
Alcira Batlle ◽  
Virginia S. Martino ◽  
...  

2005 ◽  
Vol 77 (1) ◽  
pp. 77-94 ◽  
Author(s):  
Renato A. Mortara ◽  
Walter K. Andreoli ◽  
Noemi N. Taniwaki ◽  
Adriana B. Fernandes ◽  
Claudio V. da Silva ◽  
...  

Trypanosoma cruzi, the etiological agent of Chagas’ disease, occurs as different strains or isolates that may be grouped in two major phylogenetic lineages: T. cruzi I, associated with the sylvatic cycle and T. cruzi II, linked to the human disease. In the mammalian host the parasite has to invade cells and many studies implicated the flagellated trypomastigotes in this process. Several parasite surface components and some of host cell receptors with which they interact have been identified. Our work focused on how amastigotes, usually found growing in the cytoplasm, can invade mammalian cells with infectivities comparable to that of trypomastigotes. We found differences in cellular responses induced by amastigotes and trypomastigotes regarding cytoskeletal components and actin-rich projections. Extracellularly generated amastigotes of T. cruzi I strains may display greater infectivity than metacyclic trypomastigotes towards cultured cell lines as well as target cells that have modified expression of different classes of cellular components. Cultured host cells harboring the bacterium Coxiella burnetii allowed us to gain new insights into the trafficking properties of the different infective forms of T. cruzi, disclosing unexpected requirements for the parasite to transit between the parasitophorous vacuole to its final destination in the host cell cytoplasm.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Solange L. de Castro ◽  
Denise G. J. Batista ◽  
Marcos M. Batista ◽  
Wanderson Batista ◽  
Anissa Daliry ◽  
...  

Chagas disease (CD), caused by Trypanosoma cruzi, affects approximately eight million individuals in Latin America and is emerging in nonendemic areas due to the globalisation of immigration and nonvectorial transmission routes. Although CD represents an important public health problem, resulting in high morbidity and considerable mortality rates, few investments have been allocated towards developing novel anti-T. cruzi agents. The available therapy for CD is based on two nitro derivatives (benznidazole (Bz) and nifurtimox (Nf)) developed more than four decades ago. Both are far from ideal due to substantial secondary side effects, limited efficacy against different parasite isolates, long-term therapy, and their well-known poor activity in the late chronic phase. These drawbacks justify the urgent need to identify better drugs to treat chagasic patients. Although several classes of natural and synthetic compounds have been reported to act in vitro and in vivo on T. cruzi, since the introduction of Bz and Nf, only a few drugs, such as allopurinol and a few sterol inhibitors, have moved to clinical trials. This reflects, at least in part, the absence of well-established universal protocols to screen and compare drug activity. In addition, a large number of in vitro studies have been conducted using only epimastigotes and trypomastigotes instead of evaluating compounds' activities against intracellular amastigotes, which are the reproductive forms in the vertebrate host and are thus an important determinant in the selection and identification of effective compounds for further in vivo analysis. In addition, due to pharmacokinetics and absorption, distribution, metabolism, and excretion characteristics, several compounds that were promising in vitro have not been as effective as Nf or Bz in animal models of T. cruzi infection. In the last two decades, our team has collaborated with different medicinal chemistry groups to develop preclinical studies for CD and investigate the in vitro and in vivo efficacy, toxicity, selectivity, and parasite targets of different classes of natural and synthetic compounds. Some of these results will be briefly presented, focusing primarily on diamidines and related compounds and naphthoquinone derivatives that showed the most promising efficacy against T. cruzi.


1996 ◽  
Vol 40 (11) ◽  
pp. 2455-2458 ◽  
Author(s):  
J Nakajima-Shimada ◽  
Y Hirota ◽  
T Aoki

Trypanosoma cruzi, the causative agent of Chagas' disease, exhibits two different developmental stages in mammals, the amastigote, an intracellular form that proliferates in the cytoplasm of host cells, and the trypomastigote, an extracellular form that circulates in the bloodstream. We have already established an in vitro culture system using mammalian host cells (HeLa) infected with T. cruzi in which the time course of parasite growth is determined quantitatively. We adopted this system for the screening of anti-T. cruzi agents that would ideally prove to be effective against trypanosomes with no toxicity to the host cell. Of the purine analogs tested, allopurinol markedly inhibited the growth of amastigotes in a dose-dependent manner, with no lethal effect on trypomastigotes. 3'-Deoxyinosine and 3'-deoxyadenosine also suppressed T. cruzi growth inside the host cell, with the concentrations causing 50% growth inhibition being 10 and 5 microM, respectively, in contrast to a concentration causing 50% growth inhibition of 3 microM for allopurinol. Among the pyrimidine analogs examined, 3'-azido-3'-deoxythymidine (zidovudine) significantly reduced the growth of the parasite at concentrations as low as 1 microM. The anti-human immunodeficiency virus agents 2',3'-dideoxyinosine and 2',3'-dideoxyadenosine caused a decrease in amastigote growth, while 2',3'-dideoxycytidine and 2',3'-dideoxyuridine had no inhibitory effect. When Swiss 3T3 fibroblasts were used as host cells, allopurinol, 3'-deoxyinosine, 3'-deoxyadenosine, and 3'-azid-3'-deoxythymidine also markedly inhibited T. cruzi proliferation. These results indicate that our culture system is useful as a primary screening method for candidate compounds against T. cruzi on the basis of two criteria, namely, intracellular replication by the parasite and host-cell infection rate.


Acta Tropica ◽  
2020 ◽  
Vol 210 ◽  
pp. 105504 ◽  
Author(s):  
Patrícia F.N.S. Malavazi ◽  
Cíntia Daudt ◽  
Leonardo A.K. Melchior ◽  
Dionatas U.O. Meneguetti ◽  
Samanta C.C. Xavier ◽  
...  

2020 ◽  
Vol 524 (3) ◽  
pp. 772-783 ◽  
Author(s):  
Valery M. Dembitsky ◽  
Lilya Dzhemileva ◽  
Tatyana Gloriozova ◽  
Vladimir D’yakonov

Sign in / Sign up

Export Citation Format

Share Document