scholarly journals Inhibition of Trypanosoma cruzi growth in mammalian cells by purine and pyrimidine analogs.

1996 ◽  
Vol 40 (11) ◽  
pp. 2455-2458 ◽  
Author(s):  
J Nakajima-Shimada ◽  
Y Hirota ◽  
T Aoki

Trypanosoma cruzi, the causative agent of Chagas' disease, exhibits two different developmental stages in mammals, the amastigote, an intracellular form that proliferates in the cytoplasm of host cells, and the trypomastigote, an extracellular form that circulates in the bloodstream. We have already established an in vitro culture system using mammalian host cells (HeLa) infected with T. cruzi in which the time course of parasite growth is determined quantitatively. We adopted this system for the screening of anti-T. cruzi agents that would ideally prove to be effective against trypanosomes with no toxicity to the host cell. Of the purine analogs tested, allopurinol markedly inhibited the growth of amastigotes in a dose-dependent manner, with no lethal effect on trypomastigotes. 3'-Deoxyinosine and 3'-deoxyadenosine also suppressed T. cruzi growth inside the host cell, with the concentrations causing 50% growth inhibition being 10 and 5 microM, respectively, in contrast to a concentration causing 50% growth inhibition of 3 microM for allopurinol. Among the pyrimidine analogs examined, 3'-azido-3'-deoxythymidine (zidovudine) significantly reduced the growth of the parasite at concentrations as low as 1 microM. The anti-human immunodeficiency virus agents 2',3'-dideoxyinosine and 2',3'-dideoxyadenosine caused a decrease in amastigote growth, while 2',3'-dideoxycytidine and 2',3'-dideoxyuridine had no inhibitory effect. When Swiss 3T3 fibroblasts were used as host cells, allopurinol, 3'-deoxyinosine, 3'-deoxyadenosine, and 3'-azid-3'-deoxythymidine also markedly inhibited T. cruzi proliferation. These results indicate that our culture system is useful as a primary screening method for candidate compounds against T. cruzi on the basis of two criteria, namely, intracellular replication by the parasite and host-cell infection rate.

2005 ◽  
Vol 77 (1) ◽  
pp. 77-94 ◽  
Author(s):  
Renato A. Mortara ◽  
Walter K. Andreoli ◽  
Noemi N. Taniwaki ◽  
Adriana B. Fernandes ◽  
Claudio V. da Silva ◽  
...  

Trypanosoma cruzi, the etiological agent of Chagas’ disease, occurs as different strains or isolates that may be grouped in two major phylogenetic lineages: T. cruzi I, associated with the sylvatic cycle and T. cruzi II, linked to the human disease. In the mammalian host the parasite has to invade cells and many studies implicated the flagellated trypomastigotes in this process. Several parasite surface components and some of host cell receptors with which they interact have been identified. Our work focused on how amastigotes, usually found growing in the cytoplasm, can invade mammalian cells with infectivities comparable to that of trypomastigotes. We found differences in cellular responses induced by amastigotes and trypomastigotes regarding cytoskeletal components and actin-rich projections. Extracellularly generated amastigotes of T. cruzi I strains may display greater infectivity than metacyclic trypomastigotes towards cultured cell lines as well as target cells that have modified expression of different classes of cellular components. Cultured host cells harboring the bacterium Coxiella burnetii allowed us to gain new insights into the trafficking properties of the different infective forms of T. cruzi, disclosing unexpected requirements for the parasite to transit between the parasitophorous vacuole to its final destination in the host cell cytoplasm.


2010 ◽  
Vol 2010 ◽  
pp. 1-18 ◽  
Author(s):  
Wanderley de Souza ◽  
Tecia Maria Ulisses de Carvalho ◽  
Emile Santos Barrias

Trypanosoma cruzi, the causative agent of Chagas' disease, which affects a large number of individuals in Central and South America, is transmitted to vertebrate hosts by blood-sucking insects. This protozoan is an obligate intracellular parasite. The infective forms of the parasite are metacyclic and bloodstream trypomastigote and amastigote. Metacyclic trypomastigotes are released with the feces of the insect while amastigotes and bloodstream trypomastigotes are released from the infected host cells of the vertebrate host after a complex intracellular life cycle. The recognition between parasite and mammalian host cell involves numerous molecules present in both cell types. Here, we present a brief review of the interaction betweenTrypanosoma cruziand its host cells, mainly emphasizing the mechanisms and molecules that participate in theT. cruziinvasion process of the mammalian cells.


2008 ◽  
Vol 190 (18) ◽  
pp. 6234-6242 ◽  
Author(s):  
Nicole C. Ammerman ◽  
M. Sayeedur Rahman ◽  
Abdu F. Azad

ABSTRACT As obligate intracellular, vector-borne bacteria, rickettsiae must adapt to both mammalian and arthropod host cell environments. Deciphering the molecular mechanisms of the interactions between rickettsiae and their host cells has largely been hindered by the genetic intractability of these organisms; however, research in other gram-negative pathogens has demonstrated that many bacterial determinants of attachment, entry, and pathogenesis are extracytoplasmic proteins. The annotations of several rickettsial genomes indicate the presence of homologs of the Sec translocon, the major route for bacterial protein secretion from the cytoplasm. For Rickettsia typhi, the etiologic agent of murine typhus, homologs of the Sec-translocon-associated proteins LepB, SecA, and LspA have been functionally characterized; therefore, the R. typhi Sec apparatus represents a mechanism for the secretion of rickettsial proteins, including virulence factors, into the extracytoplasmic environment. Our objective was to characterize such Sec-dependent R. typhi proteins in the context of a mammalian host cell infection. By using the web-based programs LipoP, SignalP, and Phobius, a total of 191 R. typhi proteins were predicted to contain signal peptides targeting them to the Sec translocon. Of these putative signal peptides, 102 were tested in an Escherichia coli-based alkaline phosphatase (PhoA) gene fusion system. Eighty-four of these candidates exhibited signal peptide activity in E. coli, and transcriptional analysis indicated that at least 54 of the R. typhi extracytoplasmic proteins undergo active gene expression during infections of HeLa cells. This work highlights a number of interesting proteins possibly involved in rickettsial growth and virulence in mammalian cells.


2005 ◽  
Vol 388 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Izabela M. D. BASTOS ◽  
Philippe GRELLIER ◽  
Natalia F. MARTINS ◽  
Gloria CADAVID-RESTREPO ◽  
Marian R. de SOUZA-AULT ◽  
...  

We have demonstrated that the 80 kDa POP Tc80 (prolyl oligopeptidase of Trypanosoma cruzi) is involved in the process of cell invasion, since specific inhibitors block parasite entry into non-phagocytic mammalian host cells. In contrast with other POPs, POP Tc80 is capable of hydrolysing large substrates, such as fibronectin and native collagen. In this study, we present the cloning of the POPTc80 gene, whose deduced amino acid sequence shares considerable identity with other members of the POP family, mainly within its C-terminal portion that forms the catalytic domain. Southern-blot analysis indicated that POPTc80 is present as a single copy in the genome of the parasite. These results are consistent with mapping of POPTc80 to a single chromosome. The active recombinant protein (rPOP Tc80) displayed kinetic properties comparable with those of the native enzyme. Novel inhibitors were assayed with rPOP Tc80, and the most efficient ones presented values of inhibition coefficient Ki≤1.52 nM. Infective parasites treated with these specific POP Tc80 inhibitors attached to the surface of mammalian host cells, but were incapable of infecting them. Structural modelling of POP Tc80, based on the crystallized porcine POP, suggested that POP Tc80 is composed of an α/β-hydrolase domain containing the catalytic triad Ser548–Asp631–His667 and a seven-bladed β-propeller non-catalytic domain. Docking analysis suggests that triple-helical collagen access to the catalytic site of POP Tc80 occurs in the vicinity of the interface between the two domains.


2006 ◽  
Vol 74 (6) ◽  
pp. 3334-3341 ◽  
Author(s):  
Nandini Dasgupta ◽  
Alix Ashare ◽  
Gary W. Hunninghake ◽  
Timothy L. Yahr

ABSTRACT The opportunistic pathogen Pseudomonas aeruginosa utilizes a type III secretion system (T3SS) to intoxicate eukaryotic host cells. Transcription of the T3SS is induced under calcium-limited growth conditions or following intimate contact of P. aeruginosa with host cells. In the present study, we demonstrate that expression of the T3SS is controlled by two distinct regulatory mechanisms and that these mechanisms are differentially activated in a host cell-dependent manner. The first mechanism is dependent upon ExsC, a regulatory protein that couples transcription of the T3SS to the activity of the type III secretion machinery. ExsC is essential for induction of the T3SS under low-calcium-growth conditions and for T3SS-dependent cytotoxicity towards social amoebae, insect cells, and erythrocytes. The second regulatory mechanism functions independently of ExsC and is sufficient to elicit T3SS-dependent cytotoxicity towards certain types of mammalian cells. Although this second pathway (ExsC independent) is sufficient, an exsC mutant demonstrates a lag in the induction of cytotoxicity towards Chinese hamster ovary cells and is attenuated for virulence in a mouse pneumonia model. We propose that the ExsC-dependent pathway is required for full cytotoxicity towards all host cell types tested whereas the ExsC-independent pathway may represent an adaptation that allows P. aeruginosa to increase expression of the T3SS in response to specific types of mammalian cells.


Parasitology ◽  
1999 ◽  
Vol 118 (2) ◽  
pp. 167-175 ◽  
Author(s):  
R. K. CLARK ◽  
R. E. KUHN

The intracellular cycle of Trypanosoma cruzi in mammalian host cells involves the differentiation of dividing amastigote forms into flagellated trypomastigote forms. The mechanism(s) regulating the growth and differentiation of the intracellular parasites is (are) not known. The number of parasites in infected cells can be several hundred and may be enough to induce apoptosis, a suicide-like death programme, generating products (e.g. nuclear proteins) that could function as signals to initiate the differentiation of amastigotes into trypomastigotes. Murine fibroblasts infected with T. cruzi were examined during a 5-day course of infection for evidence of apoptosis. However, characteristics of apoptosis, including degeneration of nuclear structure, condensation of chromatin, loss of plasma membrane integrity, or the cleavage of DNA into nucleosomal fragments, were not observed. Therefore, it is unlikely that products resulting from host cell apoptosis function to induce parasite differentiation. The possibility that T. cruzi might inhibit host cell apoptosis by increasing intracellular levels of Bcl-2, an endogenous inhibitor of apoptosis, was then investigated. Analysis of infected cells by flow cytometry did not demonstrate a significant amount of intracellular Bcl-2. This suggests that if the parasite is inhibiting host cell apoptosis, it is by a method that does not involve increasing levels of Bcl-2.


1988 ◽  
Vol 168 (2) ◽  
pp. 649-659 ◽  
Author(s):  
V Ley ◽  
N W Andrews ◽  
E S Robbins ◽  
V Nussenzweig

The two main stages of development of the protozoan parasite Trypanosoma cruzi found in the vertebrate host are the trypomastigote and the amastigote. It has been generally assumed that only trypomastigotes are capable of entering cells and that amastigotes are the intracellular replicative form of the parasite. We show here that after incubation for 4 h with human monocytes in vitro 90% or more of extracellularly derived (24 h) amastigotes of T. cruzi are taken up by the cells. Within 2 h they escape the phagocytic vacuole and enter the cytoplasm, where they divide and after 4-5 d transform into trypomastigotes. Trypomastigotes also invade cultured human monocytes. However, they show a lag of several hours between invasion and the start of DNA duplication, while amastigotes commence replication without an apparent lag. Amastigotes also infect cultured fibroblasts, albeit with lower efficiency. When injected intraperitoneally into mice, amastigotes are as infective as trypomastigotes. Based on these results, and on prior findings that amastigotes are found free in the circulation of mice during the acute stage of the disease (3), it seems likely that the cellular uptake of amastigotes can initiate an alternative subcycle within the life cycle of this parasite in the mammalian host. Also, because trypomastigotes and amastigotes have diverse surface antigens, they may use different strategies to invade host cells.


2019 ◽  
Vol 116 (43) ◽  
pp. 21354-21360 ◽  
Author(s):  
Anand Kumar Rai ◽  
Patricia J. Johnson

Trichomonas vaginalis, a human-infective parasite, causes the most prevalent nonviral sexually transmitted infection worldwide. This pathogen secretes extracellular vesicles (EVs) that mediate its interaction with host cells. Here, we have developed assays to study the interface between parasite EVs and mammalian host cells and to quantify EV internalization by mammalian cells. We show that T. vaginalis EVs interact with glycosaminoglycans on the surface of host cells and specifically bind to heparan sulfate (HS) present on host cell surface proteoglycans. Moreover, competition assays using HS or removal of HS from the host cell surface strongly inhibit EV uptake, directly demonstrating that HS proteoglycans facilitate EV internalization. We identified an abundant protein on the surface of T. vaginalis EVs, 4-α-glucanotransferase (Tv4AGT), and show using isothermal titration calorimetry that this protein binds HS. Tv4AGT also competitively inhibits EV uptake, defining it as an EV ligand critical for EV internalization. Finally, we demonstrate that T. vaginalis EV uptake is dependent on host cell cholesterol and caveolin-1 and that internalization proceeds via clathrin-independent, lipid raft-mediated endocytosis. These studies reveal mechanisms used to drive host:pathogen interactions and further our understanding of how EVs are internalized by target cells to allow cross-talk between different cell types.


2004 ◽  
Vol 72 (10) ◽  
pp. 5892-5902 ◽  
Author(s):  
Isabela M. Aparicio ◽  
Julio Scharfstein ◽  
Ana Paula C. A. Lima

ABSTRACT The intracellular protozoan Trypanosoma cruzi causes Chagas' disease, a chronic illness associated with cardiomyopathy and digestive disorders. This pathogen invades mammalian cells by signaling them through multiple transduction pathways. We previously showed that cruzipain, the main cysteine protease of T. cruzi, promotes host cell invasion by activating kinin receptors. Here, we report a cruzipain-mediated invasion route that is not blocked by kinin receptor antagonists. By testing different strains of T. cruzi, we observed a correlation between the level of cruzipain secreted by trypomastigotes and the capacity of the pathogen to invade host cells. Consistent with a role for cruzipain, the cysteine protease inhibitor N-methylpiperazine-urea-Phe-homophenylalanine-vinylsulfone-benzene impaired the invasion of human smooth muscle cells by strains Dm28c and X10/6 but not by the G isolate. Cruzipain-rich supernatants of Dm28c trypomastigotes enhanced the infectivity of isolate G parasites twofold, an effect which was abolished by the cysteine protease inhibitor l-trans-epoxysuccinyl-leucylamido-(4-guanidino)butane and by thapsigargin, a drug that induces depletion of the intracellular Ca2+ stores. The enhancement due to Dm28 supernatants was abolished upon cruzipain immunodepletion, and the activity was restored by purified cruzipain. In contrast, supernatants from isolate G trypomastigotes (with low levels of cruzipain) or supernatants from Dm28c epimastigotes or purified cruzipain alone did not enhance parasite invasion, indicating that the protease is required but not sufficient to engage this invasion pathway. We provide evidence that activation of this pathway requires cruzipain-mediated processing of a trypomastigote molecule associated with parasite-shed membranes. Our results couple cruzipain to host cell invasion through a kinin-independent route and further suggest that high-level cruzipain expression may contribute to parasite infectivity.


Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 534
Author(s):  
Oscar Hernán Rodríguez-Bejarano ◽  
Catalina Avendaño ◽  
Manuel Alfonso Patarroyo

Chagas disease is caused by the kinetoplastid parasite Trypanosoma cruzi, which is mainly transmitted by hematophagous insect bites. The parasite’s lifecycle has an obligate intracellular phase (amastigotes), while metacyclic and bloodstream-trypomastigotes are its infective forms. Mammalian host cell recognition of the parasite involves the interaction of numerous parasite and host cell plasma membrane molecules and domains (known as lipid rafts), thereby ensuring internalization by activating endocytosis mechanisms triggered by various signaling cascades in both host cells and the parasite. This increases cytoplasmatic Ca2+ and cAMP levels; cytoskeleton remodeling and endosome and lysosome intracellular system association are triggered, leading to parasitophorous vacuole formation. Its membrane becomes modified by containing the parasite’s infectious form within it. Once it has become internalized, the parasite seeks parasitophorous vacuole lysis for continuing its intracellular lifecycle, fragmenting such a vacuole’s membrane. This review covers the cellular and molecular mechanisms involved in T. cruzi adhesion to, recognition of and internalization in host target cells.


Sign in / Sign up

Export Citation Format

Share Document