Synergistic effect of ocean acidification and elevated temperature on the physiological ecology of the intertidal crab Porcellana platycheles

Author(s):  
Piero Calosi ◽  
Penelope Donohue ◽  
Stefanie Alber ◽  
John I. Spicer
2020 ◽  
Vol 223 (20) ◽  
pp. jeb223198
Author(s):  
Robert A. B. Mason ◽  
Christopher B. Wall ◽  
Ross Cunning ◽  
Sophie Dove ◽  
Ruth D. Gates

ABSTRACTThe absorbtion of human-emitted CO2 by the oceans (elevated PCO2) is projected to alter the physiological performance of coral reef organisms by perturbing seawater chemistry (i.e. ocean acidification). Simultaneously, greenhouse gas emissions are driving ocean warming and changes in irradiance (through turbidity and cloud cover), which have the potential to influence the effects of ocean acidification on coral reefs. Here, we explored whether physiological impacts of elevated PCO2 on a coral–algal symbiosis (Pocillopora acuta–Symbiodiniaceae) are mediated by light and/or temperature levels. In a 39 day experiment, elevated PCO2 (962 versus 431 µatm PCO2) had an interactive effect with midday light availability (400 versus 800 µmol photons m−2 s−1) and temperature (25 versus 29°C) on areal gross and net photosynthesis, for which a decline at 29°C was ameliorated under simultaneous high-PCO2 and high-light conditions. Light-enhanced dark respiration increased under elevated PCO2 and/or elevated temperature. Symbiont to host cell ratio and chlorophyll a per symbiont increased at elevated temperature, whilst symbiont areal density decreased. The ability of moderately strong light in the presence of elevated PCO2 to alleviate the temperature-induced decrease in photosynthesis suggests that higher substrate availability facilitates a greater ability for photochemical quenching, partially offsetting the impacts of high temperature on the photosynthetic apparatus. Future environmental changes that result in moderate increases in light levels could therefore assist the P. acuta holobiont to cope with the ‘one–two punch’ of rising temperatures in the presence of an acidifying ocean.


2014 ◽  
Vol 48 (17) ◽  
pp. 10079-10088 ◽  
Author(s):  
Ginger W. K. Ko ◽  
R. Dineshram ◽  
Camilla Campanati ◽  
Vera B. S. Chan ◽  
Jon Havenhand ◽  
...  

2017 ◽  
Author(s):  
Sha Ni ◽  
Isabelle Taubner ◽  
Florian Böhm ◽  
Vera Winde ◽  
Michael E. Böttcher

Abstract. The calcareous tubeworm Spirorbis spirorbis is a wide-spread serpulid species in the Baltic Sea, where it commonly grows as an epibiont on brown macroalgae (genus Fucus). It lives within a Mg-calcite shell and could be affected by ocean acidification and temperature rise induced by the predicted future atmospheric CO2 increase. However, Spirorbis tubes grow in a chemically modified boundary layer around the algae, which may mitigate acidification. In order to investigate how increasing temperature and rising pCO2 may influence S. spirorbis shell growth we carried out four seasonal experiments in the 'Kiel Outdoor Benthocosms' at elevated pCO2 and temperature conditions. Compared to laboratory batch culture experiments the benthocosm approach provides a better representation of natural conditions for physical and biological ecosystem parameters, including seasonal variations. We find that growth rates of S. spirorbis are significantly controlled by ontogenetic and seasonal effects. The length of the newly grown tube is inversely related to the initial diameter of the shell. Our study showed no significant difference of the growth rates between ambient atmospheric and elevated (1100 ppm) pCO2 conditions. No influence of daily average CaCO3 saturation state on the growth rates of S. spirorbiswas observed. We found, however, net growth of the shells even in temporarily undersaturated bulk solutions, under conditions that concurrently favored selective shell surface dissolution. The results suggest an overall resistance of S. spirorbis growth to acidification levels predicted for the year 2100 in the Baltic Sea. In contrast, S. spirorbis did not survive at mean seasonal temperatures exceeding 24 °C during the summer experiments. In the autumn experiments at ambient pCO2, the growth rates of juvenile S. spirorbis were higher under elevated temperature conditions. The results reveal that S. spirorbis may prefer moderately warmer conditions during their early life stages but will suffer from an excessive temperature increase and from increasing shell corrosion as a consequence of progressing ocean acidification.


2020 ◽  
Vol 7 ◽  
Author(s):  
Cristina Villalobos ◽  
Brooke A. Love ◽  
M. Brady Olson

Increasing green house gas emissions are expected to raise surface seawater temperatures and lead to locally intensified ocean acidity in the U.S. Pacific Northwest. Pacific herring (Clupea pallasi) are ecologically and economically important forage fish species native to this region. While the impacts of ocean acidification and ocean warming on organism physiology have been extensively studied, less is known on how concurrent climate change stressors will affect marine fish. Therefore, our study focused on the combined effects of ocean acidification and warming on Pacific herring early life history stages. Pacific herring embryos were incubated under a factorial design of two temperature (10°C or 16°C) and two pCO2 (600 μatm or 1200 μatm) treatments from fertilization until hatch (6 to 15 days depending on temperature). Elevated pCO2 was associated with a small increase in embryo mortality. Elevated temperature, as a single stressor, generated greater embryo mortality and embryo heart rates, larger yolk areas upon hatch, lower hatching success, and shorter larval lengths; compared with the same parameters measured under ambient temperature. The interaction of elevated temperature and pCO2 was associated with greater embryo heart rates and yolk areas compared to ambient conditions. This study suggests that while temperature is the primary global change stressor affecting Pacific herring embryology, interaction effects with pCO2 could introduce additional physiological challenges.


Sign in / Sign up

Export Citation Format

Share Document