Estrogen synthesis in relation to gonadal development of Japanese scallop, Patinopecten yessoensis: gonadal profile and immunolocalization of P450 aromatase and estrogen

Author(s):  
Makoto Osada ◽  
Hiroshi Tawarayama ◽  
Katsuyoshi Mori
2019 ◽  
Author(s):  
Liqing Zhou ◽  
Zhihong Liu ◽  
Yinghui Dong ◽  
Xiujun Sun ◽  
Biao Wu ◽  
...  

Abstract Background:The Yesso scallop, Patinopecten (Mizuhopecten) yessoensis, is a commercially important bivalve in the coastal countries of Northeast Asia. It has complex modes of sex differentiation, but knowledge of the mechanisms underlying this sex determination and differentiation is limited. Results:In this study, the gonad tissues from females and males at three developmental stages were used to investigate candidate genes and networks for sex differentiation via RNA-Req. A total of 901,980,606 high quality clean reads were obtained from 18 libraries, of which 417 expressed male-specific genes and 754 expressed female-specific genes. Totally, 10,074 genes differentially expressed in females and males were identified. Weighted gene co-expression network analysis (WGCNA) revealed that turquoise and green gene modules were significantly positively correlated with male gonads, while coral1 and black modules were significantly associated with female gonads. The most important gene for sex determination and differentiation was Pydmrt1, which was the only gene discovered that determined the male sex phenotype during early gonadal differentiation. Enrichment analyses of GO terms and KEGG pathways revealed that genes involved in metabolism, genetic and environmental information processes or pathways are sex-biased. Forty-nine genes in the five modules involved in sex differentiation or determination were identified and selected to construct a gene co-expression network and a hypothesized sex differentiation pathway. Conclusions: The current study focused on screening genes of sex differentiation in Yesso scallop, highlighting the potential regulatory mechanisms of gonadal development in P. yessoensis. Our data suggested that WCGNA can facilitate identification of key genes for sex differentiation and determination. Using this method, a hypothesized P. yessoensis sex determination and differentiation pathway was constructed. In this pathway, Pydmrt1 may have a leading function.


2019 ◽  
Author(s):  
Liqing Zhou ◽  
Zhihong Liu ◽  
Yinghui Dong ◽  
Xiujun Sun ◽  
Biao Wu ◽  
...  

Abstract Background:The Yesso scallop, Patinopecten (Mizuhopecten) yessoensis, is a commercially important bivalve in the coastal countries of Northeast Asia. It has complex modes of sex differentiation, but knowledge of the mechanisms underlying this sex determination and differentiation is limited. Results:In this study, the gonad tissues from females and males at three developmental stages were used to investigate candidate genes and networks for sex differentiation via RNA-Req. A total of 901,980,606 high quality clean reads were obtained from 18 libraries, of which 417 expressed male-specific genes and 754 expressed female-specific genes. Totally, 10,074 genes differentially expressed in females and males were identified. Weighted gene co-expression network analysis (WGCNA) revealed that turquoise and green gene modules were significantly positively correlated with male gonads, while coral1 and black modules were significantly associated with female gonads. The most important gene for sex determination and differentiation was Pydmrt1, which was the only gene discovered that determined the male sex phenotype during early gonadal differentiation. Enrichment analyses of GO terms and KEGG pathways revealed that genes involved in metabolism, genetic and environmental information processes or pathways are sex-biased. Forty-nine genes in the five modules involved in sex differentiation or determination were identified and selected to construct a gene co-expression network and a hypothesized sex differentiation pathway. Conclusions: The current study focused on screening genes of sex differentiation in Yesso scallop, highlighting the potential regulatory mechanisms of gonadal development in P. yessoensis. Our data suggested that WCGNA can facilitate identification of key genes for sex differentiation and determination. Using this method, a hypothesized P. yessoensis sex determination and differentiation pathway was constructed. In this pathway, Pydmrt1 may have a leading function.


1995 ◽  
Vol 43 (6) ◽  
pp. 571-577 ◽  
Author(s):  
J Almadhidi ◽  
G E Seralini ◽  
J Fresnel ◽  
P Silberzahn ◽  
J L Gaillard

Estrogens are the major steroids produced by equine gonads. To identify the cells responsible for estrogen synthesis, an antiserum against purified equine testicular cytochrome P450 aromatase was produced in rabbits. The reactivity and specificity of the antiserum were assessed by ELISA, immunoblot analysis, and immunoneutralization studies. Immunofluorescence microscopy demonstrated that in the male gonad, cytochrome P450 aromatase (P450arom) was localized in the interstitial tissue, whereas, under the experimental conditions used, the Sertoli and germ cells did not show any specific staining. In the ovary, the granulosa cells of small follicles exhibited faint immunofluorescent staining for P450arom and the granulosa cells of large, viable more follicles showed a high degree of immunoreactivity. In the corpus luteum, all the luteinized cells showed immunoreactivity. No immunoreactivity was detected in other cells of small and large viable follicles. Immunolocalization of P450arom in the equine testicular Leydig cells and in ovarian granulosa and luteinized cells indicates that these cells have the ability to metabolize androgens to estrogens and possibly to catechol estrogens.


Sign in / Sign up

Export Citation Format

Share Document