Axonal selection and myelin sheath generation in the central nervous system

2013 ◽  
Vol 25 (4) ◽  
pp. 512-519 ◽  
Author(s):  
Mikael Simons ◽  
David A Lyons
1967 ◽  
Vol 34 (2) ◽  
pp. 555-567 ◽  
Author(s):  
Asao Hirano ◽  
Herbert M. Dembitzer

The cerebral white matter of rats subjected to a variety of noxious experimental conditions was examined in the electron microscope. Several unusual configurations of the myelin sheath are identified in addition to the usual configuration. These variations include the presence of (a) formed organelles within the inner and outer loops, (b) isolated islands of cytoplasm in unfused portions of the major dense lines, (c) apparently unconnected cell processes between the sheath and the axon, and (d) concentric, double myelin sheaths. A generalized model of the myelin sheath based on a hypothetical unrolling of the sheath is described. It consists of a shovel-shaped myelin sheet surrounded by a continuous thickened rim of cytoplasm. Most of the unusual myelin configurations are explained as simple variations on this basic theme. With the help of this model, an explanation of the formation of the myelin sheath is offered. This explanation involves the concept that myelin formation can occur at all cytoplasmic areas adjacent to the myelin proper and that adjacent myelin lamellae can move in relation to each other.


Evidence is given that the median and lateral longitudinal giant myelinated fibres in the central nervous system of the prawn Leander serratus are syncitial structures, each formed by the fusion of the processes of many segmental nerve cells. Septa are found at intervals in the axoplasm of the median fibres, but they never completely transect it. They are probably relics of a condition similar to that in the earthworm where the giant fibre running the length of the cord is formed of a chain of segmental syncitial axons each divided from its neighbour by a complete septum which presumably functions as a synapse. The motor giant fibres, which are segmental and pass out of the central nervous system to the muscles, are the processes of single cells: the axoplasms of the two fibres of the pair in each segment undergo complete fusion with each other and then redivision before leaving the central nervous system. These motor giant fibres are non-myelinated within the central nervous system, although as great in diameter as other heavily myelinated fibres. They are myelinated outside the central nervous system. In the prawn therefore myelin sheath thickness is not an invariable function of axon diameter. The lateral giant-fibre synapses show complete axoplasmic discontinuity and their structure does not support Johnson’s creation of a new category of synaptic relations. Two types of synapses between fibres are described. In the first, found in the lateral giant-fibre chain, two myelinated fibres lie closely side by side for a considerable distance, but their neuroplasms are separated by a myelin layer except over an extent of less than 10 μ . In the second type, found at the point of contact of both the median and lateral fibres with the motor fibres, a myelinated fibre has synaptic connexions with a large non-myelinated fibre through many fine axonic processes which pass out through a small gap in the myelin sheath.


1941 ◽  
Vol 18 (1) ◽  
pp. 50-54 ◽  
Author(s):  
W. HOLMES ◽  
R. J. PUMPHREY ◽  
J. Z. YOUNG

1. The structure of the myelinated fibres of prawns is described, and the homologies of the nucleated sheath which lies between the axon and the fatty layer discussed. 2. The relative thickness of the myelin sheath increases with decrease in total diameter of the fibre along a curve similar in shape to that found in vertebrates and earthworms. 3. Nodes of Ranvier are found in the sheaths of most fibres of a diameter greater than about 13µ 4. The nodes are similar to those in vertebrate nerves in that the myelin sheath is interrupted at the node. 5. The conduction velocity of fibres in the central nervous system of axon diameter 26µ and total diameter 35µ is between 18 and 23 m. per sec., a rate faster than is found in the "unmyelinated" fibres of similar size in other crustacea.


2000 ◽  
Vol 37 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Chika Seiwa ◽  
Ichiro Sugiyama ◽  
Takeshi Yagi ◽  
Taisen Iguchi ◽  
Hiroaki Asou

2015 ◽  
Vol 34 (2) ◽  
pp. 139-151 ◽  
Author(s):  
Schanila Nawaz ◽  
Paula Sánchez ◽  
Sebastian Schmitt ◽  
Nicolas Snaidero ◽  
Mišo Mitkovski ◽  
...  

Multiple sclerosis 690 Motor neurone disease 692 Parkinson's disease 694 Alzheimer's disease 696 Dietary treatments for epilepsy 698 Multiple sclerosis (MS) is an autoimmune disorder of the central nervous system with a UK prevalence of ∼1.4 in 1000. Damage is caused to the myelin sheath surrounding nerves, thus impairing the conduction of impulses. The condition varies from a relapsing/remitting pattern (∼80% patients) to a progressive form that may be fatal within a few years. Nutritional considerations relate to:...


Sign in / Sign up

Export Citation Format

Share Document