scholarly journals The giant myelinated nerve fibres of the prawn

Evidence is given that the median and lateral longitudinal giant myelinated fibres in the central nervous system of the prawn Leander serratus are syncitial structures, each formed by the fusion of the processes of many segmental nerve cells. Septa are found at intervals in the axoplasm of the median fibres, but they never completely transect it. They are probably relics of a condition similar to that in the earthworm where the giant fibre running the length of the cord is formed of a chain of segmental syncitial axons each divided from its neighbour by a complete septum which presumably functions as a synapse. The motor giant fibres, which are segmental and pass out of the central nervous system to the muscles, are the processes of single cells: the axoplasms of the two fibres of the pair in each segment undergo complete fusion with each other and then redivision before leaving the central nervous system. These motor giant fibres are non-myelinated within the central nervous system, although as great in diameter as other heavily myelinated fibres. They are myelinated outside the central nervous system. In the prawn therefore myelin sheath thickness is not an invariable function of axon diameter. The lateral giant-fibre synapses show complete axoplasmic discontinuity and their structure does not support Johnson’s creation of a new category of synaptic relations. Two types of synapses between fibres are described. In the first, found in the lateral giant-fibre chain, two myelinated fibres lie closely side by side for a considerable distance, but their neuroplasms are separated by a myelin layer except over an extent of less than 10 μ . In the second type, found at the point of contact of both the median and lateral fibres with the motor fibres, a myelinated fibre has synaptic connexions with a large non-myelinated fibre through many fine axonic processes which pass out through a small gap in the myelin sheath.

1941 ◽  
Vol 18 (1) ◽  
pp. 50-54 ◽  
Author(s):  
W. HOLMES ◽  
R. J. PUMPHREY ◽  
J. Z. YOUNG

1. The structure of the myelinated fibres of prawns is described, and the homologies of the nucleated sheath which lies between the axon and the fatty layer discussed. 2. The relative thickness of the myelin sheath increases with decrease in total diameter of the fibre along a curve similar in shape to that found in vertebrates and earthworms. 3. Nodes of Ranvier are found in the sheaths of most fibres of a diameter greater than about 13µ 4. The nodes are similar to those in vertebrate nerves in that the myelin sheath is interrupted at the node. 5. The conduction velocity of fibres in the central nervous system of axon diameter 26µ and total diameter 35µ is between 18 and 23 m. per sec., a rate faster than is found in the "unmyelinated" fibres of similar size in other crustacea.


The fact that there are two very large nerve cells in the central nervous system of the squid, Loligo , was discovered by Williams (1909), who also gave a brief description of their connexions. His account appears never to have been amplified, or indeed even mentioned, by any subsequent worker until these enormous nerve fibres were accidentally rediscovered in 1933 (see Young 1935 a , 1936 a, b, c ). Williams considered that the whole giant-fibre system on each side of the body consists of the processes of one of the two main giant cells. In fact the arrangement is much more complicated than this, and contains two curiously opposite features of the greatest interest for the neurologist (Young 1936 £). First, the processes of the two main giant cells provide a clear case of the complete fusion of the axons of two nerve cells, thus infringing the strict canon of the neuron theory. Nevertheless, and this is the second point, there are also present, elsewhere in the system, discontinuous synapses which are perhaps more clear and easy to study than any yet described.


1948 ◽  
Vol s3-89 (5) ◽  
pp. 1-45
Author(s):  
J.A. C. NICOL

1. A description is given of the main features of the central nervous system of Myxicola infundibulum Rénier. 2. The nerve-cord is double in the first four thoracic segments and single posteriorly. It shows segmental swellings but is not ganglionated in the usual sense in that nerve-cell accumulations are not related directly to such swellings of the cord. 3. A very large axon lies within the dorsal portion of the nerve-cord and extends from the supra-oesophageal ganglia to the posterior end of the animal. It is small in the head ganglia where it passes transversely across the mid-line, increases in diameter in the oesophageal connectives, and expands to very large size, up to 1 mm., in the posterior thorax and anterior abdomen, and gradually tapers off to about 100µ in the posterior body. It shows segmental swellings corresponding to those of the nerve-cord in each segment. It occupies about 27 per cent, of the volume of the central nervous system and 0.3 per cent, of the volume of the animal. The diameter of the fibre increases during contraction of the worm. 4. The giant fibre is a continuous structure throughout its length, without internal dividing membranes or septa. Usually a branch of the giant fibre lies in each half of the nerve-cord in the anterior thoracic segments and these several branches are continuous with one another longitudinally and transversely. 5. The giant fibre is connected with nerve-cells along its entire course; it arises from a pair of cells in the supra-oesophageal ganglia, and receives the processes of many nerve-cells in each segment. There is no difference between the nerve-cells of the giant fibre and the other nerve-cells of the cord. 6. A distinct fibrous sheath invests the giant fibre. A slight concentration of lipoid can be revealed in this sheath by the use of Sudan black. 7. About eight peripheral branches arise from the giant fibre in each segment. They have a complex course in the nerve-cord where they anastomose with one another and receive the processes of nerve-cells. Peripherally, they are distributed to the longitudinal musculature. 8. Specimens surviving 16 days following section of the nerve-cord in the thorax have shown that the giant fibre does not degenerate in front of or behind a cut, thus confirming that it is a multicellular structure connected to nerve-cells in the thorax and abdomen. 9. It is concluded that the giant fibre of M. infundibulum is a large syncytial structure, extending throughout the entire central nervous system and the body-wall of the animal. 10. The giant fibre system of M. aesthetica resembles that of M. infundibulum. 11. Some implications of the possession of such a giant axon are discussed. It is suggested that its size, structure, and simplicity lead to rapid conduction and thus effect a considerable saving of reaction time, of considerable value to the species when considered in the light of the quick contraction which it mediates. The adoption of a sedentary mode of existence has permitted this portion of the central nervous system to become developed at the expense of other elements concerned with errant habits.


1967 ◽  
Vol 34 (2) ◽  
pp. 555-567 ◽  
Author(s):  
Asao Hirano ◽  
Herbert M. Dembitzer

The cerebral white matter of rats subjected to a variety of noxious experimental conditions was examined in the electron microscope. Several unusual configurations of the myelin sheath are identified in addition to the usual configuration. These variations include the presence of (a) formed organelles within the inner and outer loops, (b) isolated islands of cytoplasm in unfused portions of the major dense lines, (c) apparently unconnected cell processes between the sheath and the axon, and (d) concentric, double myelin sheaths. A generalized model of the myelin sheath based on a hypothetical unrolling of the sheath is described. It consists of a shovel-shaped myelin sheet surrounded by a continuous thickened rim of cytoplasm. Most of the unusual myelin configurations are explained as simple variations on this basic theme. With the help of this model, an explanation of the formation of the myelin sheath is offered. This explanation involves the concept that myelin formation can occur at all cytoplasmic areas adjacent to the myelin proper and that adjacent myelin lamellae can move in relation to each other.


Author(s):  
Christof Rickert ◽  
Thomas Kunz ◽  
Kerri-Lee Harris ◽  
Paul Whitington ◽  
Gerhard Technau

2000 ◽  
Vol 37 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Chika Seiwa ◽  
Ichiro Sugiyama ◽  
Takeshi Yagi ◽  
Taisen Iguchi ◽  
Hiroaki Asou

Sign in / Sign up

Export Citation Format

Share Document