Simultaneously in-situ fabrication of lithium fluoride and sulfide enriched artificial solid electrolyte interface facilitates high stable lithium metal anode

2021 ◽  
pp. 133193
Author(s):  
Jian Yang ◽  
Junming Hou ◽  
Zixuan Fang ◽  
Khan Kashif ◽  
Cheng Chen ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Guo ◽  
Wanying Zhang ◽  
Yubing Si ◽  
Donghai Wang ◽  
Yongzhu Fu ◽  
...  

AbstractThe interfacial instability of the lithium-metal anode and shuttling of lithium polysulfides in lithium-sulfur (Li-S) batteries hinder the commercial application. Herein, we report a bifunctional electrolyte additive, i.e., 1,3,5-benzenetrithiol (BTT), which is used to construct solid-electrolyte interfaces (SEIs) on both electrodes from in situ organothiol transformation. BTT reacts with lithium metal to form lithium 1,3,5-benzenetrithiolate depositing on the anode surface, enabling reversible lithium deposition/stripping. BTT also reacts with sulfur to form an oligomer/polymer SEI covering the cathode surface, reducing the dissolution and shuttling of lithium polysulfides. The Li–S cell with BTT delivers a specific discharge capacity of 1,239 mAh g−1 (based on sulfur), and high cycling stability of over 300 cycles at 1C rate. A Li–S pouch cell with BTT is also evaluated to prove the concept. This study constructs an ingenious interface reaction based on bond chemistry, aiming to solve the inherent problems of Li–S batteries.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dan Luo ◽  
Lei Zheng ◽  
Zhen Zhang ◽  
Matthew Li ◽  
Zhongwei Chen ◽  
...  

AbstractStable solid electrolyte interface (SEI) is highly sought after for lithium metal batteries (LMB) owing to its efficient electrolyte consumption suppression and Li dendrite growth inhibition. However, current design strategies can hardly endow a multifunctional SEI formation due to the non-uniform, low flexible film formation and limited capability to alter Li nucleation/growth orientation, which results in unconstrained dendrite growth and short cycling stability. Herein, we present a novel strategy to employ electrolyte additives containing catechol and acrylic groups to construct a stable multifunctional SEI by in-situ anionic polymerization. This self-smoothing and robust SEI offers multiple sites for Li adsorption and steric repulsion to constrain nucleation/growth process, leading to homogenized Li nanosphere formation. This isotropic nanosphere offers non-preferred Li growth orientation, rendering uniform Li deposition to achieve a dendrite-free anode. Attributed to these superiorities, a remarkable cycling performance can be obtained, i.e., high current density up to 10 mA cm−2, ultra-long cycle life over 8500 hrs operation, high cumulative capacity over 4.25 Ah cm−2 and stable cycling under 60 °C. A prolonged lifespan can also be achieved in Li-S and Li-LiFePO4 cells under lean electrolyte content, low N/P ratio or high temperature conditions. This facile strategy also promotes the practical application of LMB and enlightens the SEI design in related fields.


2021 ◽  
pp. 129911
Author(s):  
Saisai Li ◽  
Yun Huang ◽  
Wenhao Ren ◽  
Xing Li ◽  
Mingshan Wang ◽  
...  

2021 ◽  
Vol 9 (12) ◽  
pp. 7667-7674
Author(s):  
Song Li ◽  
Xian-Shu Wang ◽  
Qi-Dong Li ◽  
Qi Liu ◽  
Pei-Ran Shi ◽  
...  

A multifunctional artificial protective layer is in situ fabricated on the surface of Li anode, which facilitates stable cycle of Li anode in carbonate electrolyte by forming a unique SEI and inducing homogeneous deposition of lithium ions.


Sign in / Sign up

Export Citation Format

Share Document