A signal-amplified ratiometric fluorescence biomimetic sensor based on the synergistic effect of IFE and AE for the visual smart monitoring of oxytetracycline

2022 ◽  
pp. 134499
Author(s):  
Xuelian Hu ◽  
Ying Guo ◽  
Jinni Zhang ◽  
Xiaohui Wang ◽  
Guozhen Fang ◽  
...  
Author(s):  
Stephen R. Bolsover

The field of intracellular ion concentration measurement expanded greatly in the 1980's due primarily to the development by Roger Tsien of ratiometric fluorescence dyes. These dyes have many applications, and in particular they make possible to image ion concentrations: to produce maps of the ion concentration within living cells. Ion imagers comprise a fluorescence microscope, an imaging light detector such as a video camera, and a computer system to process the fluorescence signal and display the map of ion concentration.Ion imaging can be used for two distinct purposes. In the first, the imager looks at a field of cells, measuring the mean ion concentration in each cell of the many in the field of view. One can then, for instance, challenge the cells with an agonist and examine the response of each individual cell. Ion imagers are not necessary for this sort of experiment: one can instead use a system that measures the mean ion concentration in a just one cell at any one time. However, they are very much more convenient.


The authors' methodic for assessing the role of chemical and physic-chemical factors during the structure formation of gypsum stone is presented in the article. The methodic is also makes it possible to reveal the synergistic effect and to determine the ranges of variation of controls factors that ensure maximum values of such effect. The effect of a micro-sized modifier based on zinc hydro-silicates on the structure formation of building gypsum is analyzed and corresponding dependencies are found. It is shown that effects of influence of modifier on the properties of gypsum compositions are determined by chemical properties of modifier. Among the mentioned properties are sorption characteristics (which depend on the amount of silicic acid and its state) and physicochemical properties - the ability to act as a substrate during crystal formation. The proposed method can also be extended to other binding substances and materials. This article contributes to the understanding of the processes that occur during the structure formation of composites, which will make it possible to control the structure formation in the future, obtaining materials with a given set of properties.


2005 ◽  
Vol 67 (3) ◽  
pp. 247-251 ◽  
Author(s):  
Motoi TAKENAKA ◽  
Sang Jae BAE ◽  
Shinichi SATO ◽  
Ichiro KATAYAMA

2020 ◽  
Author(s):  
Iván Mora-Seró ◽  
Sofia Masi ◽  
David Macias-Pinilla ◽  
Carlos Echeverría-Arrondo ◽  
Juan Ignacio Climente

Sign in / Sign up

Export Citation Format

Share Document