biomimetic sensor
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 23)

H-INDEX

25
(FIVE YEARS 4)

2022 ◽  
pp. 2104066
Author(s):  
Chunmei Zhang ◽  
Fangxin Hu ◽  
Xijuan Hao ◽  
Qianghai Rao ◽  
Tao Hu ◽  
...  

2021 ◽  
Vol 5 (1) ◽  
pp. 64
Author(s):  
Youssra Aghoutane ◽  
Nezha El Bari ◽  
Zoubida Laghrari ◽  
Benachir Bouchikhi

Fenthion, an organophosphate insecticide, is a cholinesterase inhibitor and is highly toxic. An electrochemical sensor based on molecularly imprinted polymer is developed here for its detection. For this purpose, 2-aminothiophenol mixed with gold nanoparticles was immobilized on screen-printed gold electrodes. The FEN pattern was then fixed before being covered with 2-aminothiophenol. Cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy methods were used for the electrochemical characterization. The low detection limit was 0.05 mg/Kg over a range of 0.01–17.3 µg/mL. The sensor was successfully applied for the determination of FEN in olive oil samples with high recovery values.


2021 ◽  
Vol 5 (1) ◽  
pp. 63
Author(s):  
Hafsa El Youbi ◽  
Alassane Diouf ◽  
Benachir Bouchikhi ◽  
Nezha El Bari

Codeine and diclofenac overdoses have been widely reported. Here, a biomimetic sensor (bi-MIP) was devised, and an electronic tongue was used to analyze water samples simultaneously containing both these drugs. The bi-MIP sensor limits of detection for diclofenac and codeine taken individually were 0.01 µg/mL and 0.16 µg/mL, respectively. Due to a cross-reactivity effect when using the bi-MIP sensor, the electronic tongue was shown to differentiate samples containing both analytes. The results confirm the feasibility of simultaneous detection of two target analytes via a bi-MIP sensor. Additionally, they demonstrate the ability of a multi-sensor to classify different water samples.


2021 ◽  
pp. 50-53
Author(s):  
N.N. Malikova ◽  
◽  
N.I. Ali-zade ◽  
T.M. Nagiev ◽  
◽  
...  

Biomimetic sensors based on semiconductor (Si), metal (Al) and smart material (TPhPFe3+OH/Al2O3) have been developed. It has been found that a biomimetic sensor, where a semiconductor (Si) is used as an electrode, exhibits high sensitivity, stability and reproducibility. The effect of temperature and the amount of smart material on the catalase activity of biomimetic sensors was studied. At the study of the Si-electrode for catalase activity, it was revealed that the amount of smart material and temperature do not affect the detection limit of hydrogen peroxide in an aqueous solution, the sensitivity threshold, which was 10-6 mass%. When detecting the catalase activity of the TPhPFe3+OH/Al2O3//Al biomimetic sensor, it was established that the sensitivity threshold was also 10-6 mass %


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 714
Author(s):  
Gaber A. M. Mersal ◽  
Hamdy S. El-Sheshtawy ◽  
Mohammed A. Amin ◽  
Nasser Y. Mostafa ◽  
Amine Mezni ◽  
...  

The agricultural use of organophosphorus pesticides is a widespread practice with significant advantages in crop health and product yield. An undesirable consequence is the contamination of soil and groundwater by these neurotoxins resulting from over application and run-off. Here, we design and synthesize the mononuclear zinc(II) complexes, namely, [Zn(AMB)2Cl](ClO4) 1 and [Zn(AMB)2(OH)](ClO4) 2 (AMB = 2-aminomethylbenzimidazole), as artificial catalysts inspired by phosphotriesterase (PTE) for the hydrolysis of organophosphorus compounds (OPs) and simultaneously detect the organophosphate pesticides such as fenitrothion and parathion. Spectral and DFT (B3LYP/Lanl2DZ) calculations revealed that complexes 1 and 2 have a square-pyramidal environment around zinc(II) centers with coordination chromophores of ZnN4Cl and ZnN4O, respectively. Both 1 and 2 were used as a modifier in the construction of a biomimetic sensor for the determination of toxic OPs, fenitrothion and parathion, in phosphate buffer by square wave voltammetry. The hydrolysis of OPs using 1 or 2 generates p-nitrophenol, which is subsequently oxidized at the surface of the modified carbon past electrode. The catalytic activity of 2 was higher than 1, which is attributed to the higher electronegativity of the former. The oxidation peak potentials of p-nitrophenol were obtained at +0.97 V (vs. Ag/AgCl) using cyclic voltammetry (CV) and +0.88 V (vs. Ag/AgCl) using square wave voltammetry. Several parameters were investigated to evaluate the performance of the biomimetic sensor obtained after the incorporation of zinc(II) complex 1 and 2 on a carbon paste electrode (CPE). The calibration curve showed a linear response ranging between 1.0 μM (0.29 ppm) and 5.5 μM (1.6 ppm) for fenitrothion and 1.0 μM (0.28 ppm) and 0.1 μM (0.028 ppm) for parathion with a limit of detection (LOD) of 0.08 μM (0.022 ppm) and 0.51 μM (0.149 ppm) for fenitrothion and parathion, respectively. The obtained results clearly demonstrated that the CPE modified by 1 and 2 has a remarkable electrocatalytic activity towards the hydrolysis of OPs under optimal conditions.


Author(s):  
Zhuo Zou ◽  
Zhuanzhuan Shi ◽  
Chengsong Yuan ◽  
Chuyue Tang ◽  
Chao Wu ◽  
...  

Here unique cobalt nanoparticles were deposited on nitrogen-doped graphene as an enzyme-free biomimetic sensor for superoxide anion detection with the shortest response time and the highest sensitivity among the known...


2020 ◽  
pp. 65-68
Author(s):  
N.N. Malikova ◽  
◽  
N.I. Ali-zade ◽  
T.M. Nagiev ◽  
◽  
...  

The physicochemical features of biomimetic sensor have been studied, using various materials as a transducer. It is shown that biomimetic sensor prepared on the basis of a smart material and semiconductors had a number of technological advantages. It was found that among the selected various materials, the biomimetic sensor prepared from the smart material TPhPFe3+OH/Al2O3 and the semiconductor Si proved to be the most effective. The developed biomimetic sensor is differed by high activity, sensitivity, stability and reproducibility with the possibility of expanding the range of detectable trace concentration of H2O2 in aqueous solutions to 10-6 mass %


2020 ◽  
Vol 49 (12) ◽  
pp. 1447-1451
Author(s):  
Shunsuke Tomita ◽  
Hiroka Sugai ◽  
Sayaka Ishihara ◽  
Takuya Hosokai ◽  
Ryoji Kurita

Sign in / Sign up

Export Citation Format

Share Document